Influence of bio fabricated manganese oxide nanoparticles for effective callogenesis of Moringa oleifera Lam

[1]  S. Ercişli,et al.  Nanoparticles: The Plant Saviour under Abiotic Stresses , 2022, Nanomaterials.

[2]  T. Ahmed,et al.  Hydropriming with Moringa Leaf Extract Mitigates Salt Stress in Wheat Seedlings , 2021, Agriculture.

[3]  B. Patil,et al.  Manganese Oxide Nanoparticles as Safer Seed Priming Agent to Improve Chlorophyll and Antioxidant Profiles in Watermelon Seedlings , 2021, Nanomaterials.

[4]  N. Khan,et al.  Uptake, Translocation, and Consequences of Nanomaterials on Plant Growth and Stress Adaptation , 2021 .

[5]  V. Staicu,et al.  Removal of Metals from Aqueous Solutions Using Sea Buckthorn Waste from Dietary Supplement Technology , 2021, Sustainability.

[6]  R. Javed,et al.  Comparison of chemically and biologically synthesized nanoparticles for the production of secondary metabolites, and growth and development of plants , 2021 .

[7]  M. Younas,et al.  Light-mediated biosynthesis of phenylpropanoid metabolites and antioxidant potential in callus cultures of purple basil (Ocimum basilicum L. var purpurascens) , 2020, Plant Cell, Tissue and Organ Culture (PCTOC).

[8]  Talha Farooq Khan,et al.  Green fabricated zinc oxide nanoformulated media enhanced callus induction and regeneration dynamics of Panicum virgatum L. , 2020, bioRxiv.

[9]  A. Basit,et al.  Moringa landraces of Pakistan are potential source of premium quality oil , 2020 .

[10]  J. Peralta-Videa,et al.  Manganese Nanoparticles Control Salinity-Modulated Molecular Responses in Capsicum annuum L. through Priming: A Sustainable Approach for Agriculture , 2020 .

[11]  J. Iqbal,et al.  Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus Triquetra leaf extract , 2020, Materials Research Express.

[12]  J. Gardea-Torresdey,et al.  Can abiotic stresses in plants be alleviated by manganese nanoparticles or compounds? , 2019, Ecotoxicology and environmental safety.

[13]  L. Fraceto,et al.  Polymeric nanoparticles as an alternative for application of gibberellic acid in sustainable agriculture: a field study , 2019, Scientific Reports.

[14]  P. Golkar,et al.  Modulation of callus growth and secondary metabolites in different Thymus species and Zataria multiflora micropropagated under ZnO nanoparticles stress , 2019, Biotechnology and applied biochemistry.

[15]  M. Ghorbanpour,et al.  Manganese oxide nanoparticle-induced changes in growth, redox reactions and elicitation of antioxidant metabolites in deadly nightshade (Atropa belladonna L.) , 2018, Industrial Crops and Products.

[16]  Azize Alayli Gungor,et al.  Effects of ZnO, CuO and γ-Fe3O4 nanoparticles on mature embryo culture of wheat (Triticum aestivum L.) , 2018, Plant Cell, Tissue and Organ Culture (PCTOC).

[17]  V. V. Padil,et al.  Green Synthesis of Metal and Metal Oxide Nanoparticles and Their Effect on the Unicellular Alga Chlamydomonas reinhardtii , 2018, Nanoscale Research Letters.

[18]  N. Ghaemi,et al.  Optimisation of green synthesis of MnO nanoparticles via utilising response surface methodology. , 2018, IET nanobiotechnology.

[19]  Hao Chen Metal based nanoparticles in agricultural system: behavior, transport, and interaction with plants , 2018 .

[20]  C. Buzea,et al.  Nanoparticle Uptake by Plants: Beneficial or Detrimental? , 2018 .

[21]  Zabta Khan Shinwari,et al.  Biosynthesis of iron oxide (Fe2O3) nanoparticles via aqueous extracts of Sageretia thea (Osbeck.) and their pharmacognostic properties , 2017 .

[22]  A. Hartmann,et al.  Heavy Metals Induce Iron Deficiency Responses at Different Hierarchic and Regulatory Levels1[OPEN] , 2017, Plant Physiology.

[23]  Vineet Kumar,et al.  Green synthesis of manganese oxide nanoparticles for the electrochemical sensing of p-nitrophenol , 2017, International Nano Letters.

[24]  Wenying Wang,et al.  Manganese Toxicity Inhibited Root Growth by Disrupting Auxin Biosynthesis and Transport in Arabidopsis , 2017, Front. Plant Sci..

[25]  K. S. Siddiqi,et al.  Plant Response to Engineered Metal Oxide Nanoparticles , 2017, Nanoscale Research Letters.

[26]  A. C. Pandey,et al.  Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. , 2017, Plant physiology and biochemistry : PPB.

[27]  E. Gurel,et al.  Elicitation of Secondary Metabolites in Callus Cultures of Stevia rebaudiana Bertoni Grown Under ZnO and CuO Nanoparticles Stress , 2017, Sugar Tech.

[28]  M. Fuller,et al.  Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill.) under salt stress , 2016 .

[29]  B. Abbasi,et al.  Elicitation of Medicinally Important Antioxidant Secondary Metabolites with Silver and Gold Nanoparticles in Callus Cultures of Prunella vulgaris L. , 2016, Applied Biochemistry and Biotechnology.

[30]  Rattan Lal,et al.  Effects of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants or Nanonutrients? , 2016, Water, Air, & Soil Pollution.

[31]  Veena Sharma,et al.  Phytochemical analysis and evaluation of antioxidant activities of hydro-ethanolic extract of Moringa oleifera Lam. Pods , 2016 .

[32]  M. Haneefa,et al.  Green synthesis and characterization of Manganese nanoparticles using natural plant extracts and its evaluation of antimicrobial activity , 2015 .

[33]  J. Lynch,et al.  Manganese phytotoxicity: new light on an old problem. , 2015, Annals of botany.

[34]  M. S. Akhtar,et al.  α-Fe2O3 hexagonal cones synthesized from the leaf extract of Azadirachta indica and its thermal catalytic activity , 2015 .

[35]  A. Spada,et al.  Cultivation, Genetic, Ethnopharmacology, Phytochemistry and Pharmacology of Moringa oleifera Leaves: An Overview , 2015, International journal of molecular sciences.

[36]  T. Kleiber Effect of Manganese Nutrition on Content of Nutrient and Yield of Lettuce (Lactuca Sativa L.) in Hydroponic/Wpływ Żywienia Manganem Na Zawartość Składników I Plonowanie Sałaty (Lactuca Sativa L.) W Hydroponice , 2014 .

[37]  M. Guerinot,et al.  Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants , 2014, Front. Plant Sci..

[38]  K. Safavi Effect of Titanium Dioxide Nanoparticles in Plant Tissue Culture Media for Enhance Resistance to Bacterial Activity , 2015 .

[39]  M. J. Jaskani,et al.  OPTIMIZATION OF THE MICRO-CLONING SYSTEM OF THREATENED Moringa oleifera LAM. , 2014 .

[40]  K. Sugimoto,et al.  Plant Callus: Mechanisms of Induction and Repression[OPEN] , 2013, Plant Cell.

[41]  Luca Espen,et al.  Morphological and Proteomic Responses of Eruca sativa Exposed to Silver Nanoparticles or Silver Nitrate , 2013, PloS one.

[42]  Sajjad Khani,et al.  Plant In vitro Culture goes Nano: Nanosilver-Mediated Decontamination of Ex vitro Explants , 2013 .

[43]  S. Basra,et al.  Response of Moringa oleifera to saline conditions. , 2012 .

[44]  Z. Rengel,et al.  Function of Nutrients: Micronutrients , 2012 .

[45]  E. Aspuria,et al.  Callus Induction in Cotyledons of Moringa oleifera Lam. , 2011 .

[46]  Siavash Iravani,et al.  Green synthesis of metal nanoparticles using plants , 2011 .

[47]  A. Ivanov,et al.  MANGANESE AS ESSENTIAL AND TOXIC ELEMENT FOR PLANTS: TRANSPORT, ACCUMULATION AND RESISTANCE MECHANISMS , 2010 .

[48]  E. Etxeberria,et al.  Evidence for two endocytic transport pathways in plant cells , 2009 .

[49]  V. Gaba,et al.  Vegetative micro-cloning to sustain biodiversity of threatened Moringa species , 2009, In Vitro Cellular & Developmental Biology - Plant.

[50]  A. Haque,et al.  The influence of different hormone concentration and combination on callus induction and regeneration of Rauwolfia serpentina L. Benth. , 2008, Pakistan journal of biological sciences : PJBS.

[51]  S. R. Mousavi,et al.  Effect of Zinc and Manganese Foliar Application on Yield, Quality and Enrichment on Potato (Solanum tuberosum L.) , 2007 .

[52]  V. Bankova,et al.  Different extraction methods of biologically active components from propolis: a preliminary study , 2007, Chemistry Central journal.

[53]  S. Bodhankar,et al.  Evaluation of aqueous leaves extract of Moringa oleifera Linn for wound healing in albino rats. , 2006, Indian journal of experimental biology.

[54]  H. Braun,et al.  The Role of Hydrogen Peroxide-Producing and Hydrogen Peroxide-Consuming Peroxidases in the Leaf Apoplast of Cowpea in Manganese Tolerance1[W] , 2006, Plant Physiology.

[55]  J. Fahey,et al.  Moringa oleifera: A Review of the Medical Evidence for Its Nutritional, Therapeutic, and Prophylactic Properties. Part 1. , 2005 .

[56]  M. Johri,et al.  Action of plant hormones , 2001 .

[57]  R. Shibli,et al.  Iron source and cytokinin mitigate the incidence of chlorosis and hyperhydration in vitro , 1997 .