A Comparative Study of Content Based Image Retrieval Trends and Approaches

Content Based Image Retrieval (CBIR) is an important step in addressing image storage and management problems. Latest image technology improvements along with the Internet growth have led to a huge amount of digital multimedia during the recent decades. Various methods, algorithms and systems have been proposed to solve these problems. Such studies revealed the indexing and retrieval concepts, which have further evolved to Content-Based Image Retrieval. CBIR systems often analyze image content via the so-called low-level features for indexing and retrieval, such as color, texture and shape. In order to achieve significantly higher semantic performance, recent systems seek to combine low-level with high-level features that contain perceptual information for human. Purpose of this review is to identify the set of methods that have been used for CBR and also to discuss some of the key contributions in the current decade related to image retrieval and main challenges involved in the adaptation of existing image retrieval techniques to build useful systems that can handle real-world data. By making use of various CBIR approaches accurate, repeatable, quantitative data must be efficiently extracted in order to improve the retrieval accuracy of content-based image retrieval systems. In this paper, various approaches of CBIR and available algorithms are reviewed. Comparative results of various techniques are presented and their advantages, disadvantages and limitations are discussed. .

[1]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[2]  Alex Pentland,et al.  Fractal-Based Description of Natural Scenes , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Roland T. Chin,et al.  On Image Analysis by the Methods of Moments , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Anil K. Jain,et al.  Random field models in image analysis , 1989 .

[5]  Alireza Khotanzad,et al.  Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Anil K. Jain,et al.  Texture classification and segmentation using multiresolution simultaneous autoregressive models , 1992, Pattern Recognit..

[7]  Shih-Fu Chang,et al.  Transform features for texture classification and discrimination in large image databases , 1994, Proceedings of 1st International Conference on Image Processing.

[8]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[9]  T. Hamada,et al.  A flexible image retrieval using explicit visual instruction , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[10]  Markus A. Stricker,et al.  Similarity of color images , 1995, Electronic Imaging.

[11]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Other Conferences.

[12]  Dragutin Petkovic,et al.  Query by Image and Video Content: The QBIC System , 1995, Computer.

[13]  Clark F. Olson,et al.  Parallel Algorithms for Hierarchical Clustering , 1995, Parallel Comput..

[14]  Miroslaw Pawlak,et al.  On Image Analysis by Moments , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Josef Bigün,et al.  Orientation radiograms for indexing and identification in image databases , 1996, 1996 8th European Signal Processing Conference (EUSIPCO 1996).

[17]  R. Ramakrishnan,et al.  An Optimizer for Heterogeneous Systems with NonStandard Data and Search Capabilities , 1996 .

[18]  B. S. Manjunath,et al.  NeTra: A toolbox for navigating large image databases , 1997, Proceedings of International Conference on Image Processing.

[19]  P. Tsakalides,et al.  A STATISTICAL APPROACH TO TEXTURE IMAGE RETRIEVAL VIA ALPHA-STABLE MODELING OF WAVELET DECOMPOSITIONS , 1997 .

[20]  Stanley M. Dunn,et al.  Shape-based indexing in a medical image database , 1998, Proceedings. Workshop on Biomedical Image Analysis (Cat. No.98EX162).

[21]  Jing Huang,et al.  An automatic hierarchical image classification scheme , 1998, MULTIMEDIA '98.

[22]  J. C. BurgesChristopher A Tutorial on Support Vector Machines for Pattern Recognition , 1998 .

[23]  Shih-Fu Chang,et al.  Semantic visual templates: linking visual features to semantics , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[24]  Josef Kittler,et al.  Efficient and Robust Retrieval by Shape Content through Curvature Scale Space , 1998, Image Databases and Multi-Media Search.

[25]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[26]  Y. Mori,et al.  Image-to-word transformation based on dividing and vector quantizing images with words , 1999 .

[27]  Kilian Stoffel,et al.  Parallel k/h-Means Clustering for Large Data Sets , 1999, Euro-Par.

[28]  Jitendra Malik,et al.  Blobworld: A System for Region-Based Image Indexing and Retrieval , 1999, VISUAL.

[29]  Nuno Vasconcelos,et al.  Bayesian models for visual information retrieval , 2000 .

[30]  Jiahua Wu,et al.  Rotation Invariant Classification of 3D Surface Textures using Photometric Stereo and Surface Magnitude Spectra , 2000, BMVC.

[31]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Remco C. Veltkamp,et al.  Content-based image retrieval systems: A survey , 2000 .

[33]  Erkki Oja,et al.  PicSOM - content-based image retrieval with self-organizing maps , 2000, Pattern Recognit. Lett..

[34]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[35]  Mihai Datcu,et al.  Interactive learning and probabilistic retrieval in remote sensing image archives , 2000, IEEE Trans. Geosci. Remote. Sens..

[36]  Elias Dahlhaus,et al.  Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition , 2000, J. Algorithms.

[37]  Colin Campbell,et al.  Algorithmic approaches to training Support Vector Machines: a survey , 2000, ESANN.

[38]  M. Zhenjiang Zernike moment-based image shape analysis and its application , 2000 .

[39]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[40]  Ben Bradshaw,et al.  Semantic based image retrieval: a probabilistic approach , 2000, ACM Multimedia.

[41]  Miroslaw Bober,et al.  MPEG-7 visual shape descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[42]  Nicolas Pérez de la Blanca,et al.  A scheme of colour image retrieval from databases , 2001, Pattern Recognit. Lett..

[43]  Thierry Pun,et al.  Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..

[44]  Murat Kunt,et al.  Content-based retrieval from image databases: current solutions and future directions , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[45]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[46]  Huazhong Shu,et al.  Two new algorithms for efficient computation of Legendre moments , 2002, Pattern Recognit..

[47]  Zhongfei Zhang,et al.  A clustering based approach to efficient image retrieval , 2002, 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings..

[48]  Zheru Chi,et al.  Fuzzy integral for leaf image retrieval , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[49]  Shigeo Wada,et al.  Flexible color texture retrieval method using multi-resolution mosaic for image classification , 2002, 6th International Conference on Signal Processing, 2002..

[50]  Mingjing Li,et al.  Color texture moments for content-based image retrieval , 2002, Proceedings. International Conference on Image Processing.

[51]  Kee Tung. Wong,et al.  Texture features for image classification and retrieval. , 2002 .

[52]  Yap-Peng Tan,et al.  A novel multi-scale spatial-color descriptor for content-based image retrieval , 2002, 7th International Conference on Control, Automation, Robotics and Vision, 2002. ICARCV 2002..

[53]  Peter Stanchev,et al.  High Level Color Similarity Retrieval , 2003 .

[54]  Tat-Seng Chua,et al.  A bootstrapping approach to annotating large image collection , 2003, MIR '03.

[55]  T. Painter,et al.  Retrieval of subpixel snow-covered area and grain size from imaging spectrometer data , 2003 .

[56]  Theo Gevers,et al.  Classifying color edges in video into shadow-geometry, highlight, or material transitions , 2003, IEEE Trans. Multim..

[57]  Hamid Abrishami Moghaddam,et al.  A new algorithm for image indexing and retrieval using wavelet correlogram , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[58]  Michael G. Strintzis,et al.  An ontology approach to object-based image retrieval , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[59]  Dengsheng Zhang Improving image retrieval performance by using both color and texture features , 2004, Third International Conference on Image and Graphics (ICIG'04).

[60]  Shwu-Huey Yen,et al.  A study of shape-based image retrieval , 2004, 24th International Conference on Distributed Computing Systems Workshops, 2004. Proceedings..

[61]  Kyuseok Shim,et al.  WALRUS: A Similarity Retrieval Algorithm for Image Databases , 2004, IEEE Trans. Knowl. Data Eng..

[62]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[63]  Shamik Sural,et al.  Similarity between Euclidean and cosine angle distance for nearest neighbor queries , 2004, SAC '04.

[64]  Hans Hinterberger,et al.  Content-Based Image Retrieval in Astronomy , 2000, Information Retrieval.

[65]  Raveendran Paramesran,et al.  An efficient method for the computation of Legendre moments , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  James Ze Wang,et al.  Content-based image retrieval: approaches and trends of the new age , 2005, MIR '05.

[67]  Bipin C. Desai,et al.  Supervised Machine Learning based Medical Image Annotation and Retrieval , 2005, CLEF.

[68]  Hwann-Tzong Chen,et al.  Semantic manifold learning for image retrieval , 2005, ACM Multimedia.

[69]  Sanjeev Khudanpur,et al.  Hidden Markov models for automatic annotation and content-based retrieval of images and video , 2005, SIGIR '05.

[70]  Chin-Hui Lee,et al.  Automatic Image Annotation through Multi-Topic Text Categorization , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.

[71]  Nuno Vasconcelos,et al.  Query by Semantic Example , 2006, CIVR.

[72]  Farshad Fotouhi,et al.  Building a user-centered semantic hierarchy in image databases , 2006, Multimedia Systems.

[73]  Farshad Fotouhi,et al.  S-IRAS: An Interactive Semantic Image Retrieval and Annotation System , 2006, Int. J. Semantic Web Inf. Syst..

[74]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[75]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[76]  Ying Liu,et al.  A survey of content-based image retrieval with high-level semantics , 2007, Pattern Recognit..

[77]  Kwang-Kyu Seo,et al.  An application of one-class support vector machines in content-based image retrieval , 2007, Expert Syst. Appl..

[78]  Khalid M. Hosny,et al.  Exact Legendre moment computation for gray level images , 2007, Pattern Recognit..

[79]  P.S. Hiremath,et al.  Content Based Image Retrieval Using Color, Texture and Shape Features , 2007, 15th International Conference on Advanced Computing and Communications (ADCOM 2007).

[80]  Bipin C. Desai,et al.  A Framework for Medical Image Retrieval Using Machine Learning and Statistical Similarity Matching Techniques With Relevance Feedback , 2007, IEEE Transactions on Information Technology in Biomedicine.

[81]  Liang-Tien Chia,et al.  Image retrieval with a multi-modality ontology , 2007, Multimedia Systems.

[82]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[83]  M. Sarshar,et al.  A Novel Content-Based Image Retrieval Technique Using Tree Matching , 2008 .

[84]  Kpalma Kidiyo,et al.  A Survey of Shape Feature Extraction Techniques , 2008 .

[85]  Md. Monirul Islam,et al.  Automatic Categorization of Image Regions Using Dominant Color Based Vector Quantization , 2008, 2008 Digital Image Computing: Techniques and Applications.

[86]  B. S. Adiga,et al.  A Universal Model for Content-Based Image Retrieval , 2008 .

[87]  C. R. Venugopal,et al.  Image Retrieval from Databases: an Approach using Region Color and Indexing Technique , 2008, HPCNCS.

[88]  I. Felci Rajam,et al.  An Efficient Content Based Image Retrieval Framework Using Machine Learning Techniques , 2010, ICDEM.

[89]  Wan-Chi Siu,et al.  Multimedia Information Retrieval and Management: Technological Fundamentals and Applications , 2010 .

[90]  S. Valli,et al.  SRBIR: Semantic Region Based Image Retrieval by Extracting the Dominant Region and Semantic Learning , 2011 .

[91]  Philip S. Yu,et al.  Efficient Relevance Feedback for Content-Based Image Retrieval by Mining User Navigation Patterns , 2011, IEEE Transactions on Knowledge and Data Engineering.

[92]  Mark R. Pickering,et al.  Scale and Rotation Invariant Gabor Features for Texture Retrieval , 2011, 2011 International Conference on Digital Image Computing: Techniques and Applications.

[93]  Saptadi Nugroho,et al.  Rotation Invariant Indexing For Image Using Zernike Moments and R–Tree , 2011 .

[94]  Olivier Alata,et al.  Choice of a pertinent color space for color texture characterization using parametric spectral analysis , 2011, Pattern Recognit..

[95]  Marcello Pelillo,et al.  Content-based image retrieval with relevance feedback using random walks , 2011, Pattern Recognit..

[96]  H. B. Kekre,et al.  A SURVEY OF CBIR TECHNIQUES AND SEMANTICS , 2011 .

[97]  Aymn E. Khedr,et al.  A proposed image processing framework to support Early liver Cancer Diagnosis , 2012 .

[98]  Weisi Lin,et al.  Generalized Biased Discriminant Analysis for Content-Based Image Retrieval , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[99]  Chong-Wah Ngo,et al.  Fast Semantic Diffusion for Large-Scale Context-Based Image and Video Annotation , 2012, IEEE Transactions on Image Processing.

[100]  Nesar Ahmad,et al.  Unsupervised Content Based Image Retrieval by Combining Visual Features of an Image With A Threshold , 2012 .

[101]  Kanchan Saxena,et al.  A SURVEY ON CONTENT BASED IMAGE RETRIEVAL USING BDIP,BVLC AND DCD , 2012 .

[102]  S. Valli,et al.  Region-based image retrieval using the semantic cluster matrix and adaptive learning , 2012, Int. J. Comput. Sci. Eng..

[103]  T. A. Tuan,et al.  Human Activity Recognition System : Using Improved Crossbreed Features and Artificial Neural Network , 2012 .

[104]  Xing-Yuan Wang,et al.  An effective method for color image retrieval based on texture , 2012, Comput. Stand. Interfaces.

[105]  Metin Nafi Gürcan,et al.  Content-Based Microscopic Image Retrieval System for Multi-Image Queries , 2012, IEEE Transactions on Information Technology in Biomedicine.

[106]  M. R. Taherykhani,et al.  Detection of Reflection in Iris Images using back Propagation , 2014 .

[107]  D. Jayadevappa,et al.  Novel algorithm for exudate extraction from fundus images of the eye for a content based image retrieval system , 2014, 2014 IEEE International Conference on Control System, Computing and Engineering (ICCSCE 2014).

[108]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.