Global progress in photovoltaic technologies and the scenario of development of solar panel plant and module performance estimation − Application in Nigeria

Energy is one of the Sustainable Development Goals (SDGs) – a post-2015 blueprint recently agreed upon by the United Nations, to address the energy poverty problem in the global community. This plan, coupled with the need to mitigate climate change and also find alternative energy options to fossil fuels, is expected to continuously lead to increased interests in the development of renewable energy systems, around the world. Such systems have the potential to address the energy deficit in the world’s energy poor regions, e.g. sub-Saharan Africa, where about 50% of the 1.2 billion people in the world live without access to electricity. This paper first discusses the state-of-the-art of photovoltaic (PV) technologies worldwide. It then presents the development of solar panel plant, using the National Agency for Science and Engineering Infrastructure (NASENI) 7.5MW solar panel plant in Nigeria as a case study, which is established to build local capacity in PV technologies and also promote their widespread applications. The plant layout design, materials, equipment and production line are discussed. A new technique called Fundamental PV Module Performance Analysis (FPVMPA) is employed to assess the performance of a single NASENI 190W module in terms of power output, energy yield, capture losses, fill factor, and efficiency, allowing the prediction of the module performance pre-installation, based on IEC 61724 standards. Furthermore, emphasis is laid on the impact of temperature on the module, which affects its efficiency and overall outputs. These analyses are then used to evaluate the performance of a 54.72kW Photovoltaic Electric Power Generation Plant (PEPGP) that is proposed for a remote mini-estate in Kutunku, Nigeria. Future research directions are also provided on module life cycle analysis, end-of-life management and recycling. Results show the module performance under varying irradiance and temperature conditions, which can be useful for design, planning and application purposes.

[1]  L. Chaar,et al.  Review of photovoltaic technologies , 2011 .

[2]  Hideyuki Takakura,et al.  Evaluation of electric energy performance by democratic module PV system field test , 2001 .

[3]  Andreas Schüler,et al.  Quantum dot containing nanocomposite thin films for photoluminescent solar concentrators , 2007 .

[4]  S. Glunz,et al.  Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells , 2013, IEEE Journal of Photovoltaics.

[5]  I. Repins,et al.  19·9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81·2% fill factor , 2008 .

[6]  Mario Tucci,et al.  Layout Design for a Low Capacity Manufacturing Line: A Case Study , 2013 .

[7]  J. So,et al.  Performance Results and Analysis of Large Scale PV System , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[8]  Brian S. Pearson,et al.  Design for energy: Modeling of spectrum, temperature and device structure dependences of solar cell energy production , 2015 .

[9]  L. A. Dobrzański,et al.  Application of crystalline silicon solar cells in photovoltaic modules , 2010 .

[10]  E. E. van Dyk,et al.  Analysis of performance and device parameters of CIGS PV modules deployed outdoors , 2009 .

[11]  Tapas K. Mallick,et al.  Design, fabrication and outdoor performance analysis of a low concentrating photovoltaic system , 2015 .

[12]  M. Terziovski,et al.  The relationship between total quality management practices and operational performance , 1999 .

[13]  Siddig Omer,et al.  Advancements in hybrid photovoltaic systems for enhanced solar cells performance , 2015 .

[14]  V. Fthenakis,et al.  The energy payback time of advanced crystalline silicon PV modules in 2020: a prospective study , 2014 .

[15]  Dieter Bonnet,et al.  ReviewArticle Thin-Film Solar Cells Based on the Polycrystalline Compound Semiconductors CIS and CdTe , 2007 .

[16]  Rolf Brendel,et al.  20.1%‐efficient crystalline silicon solar cell with amorphous silicon rear‐surface passivation , 2005 .

[17]  C. Guillén,et al.  CuInSe2 Formation by selenization of sequentially evaporated metallic layers , 2005 .

[18]  S. S. Chandel,et al.  Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review , 2013 .

[19]  Nelson A. Kelly,et al.  Increasing the solar photovoltaic energy capture on sunny and cloudy days , 2011 .

[20]  N. Gorji,et al.  A theoretical approach on the strain-induced dislocation effects in the quantum dot solar cells , 2012 .

[21]  Nasrudin Abd Rahim,et al.  A review on global solar energy policy , 2011 .

[22]  Morgan Bazilian,et al.  Lessons for low-carbon energy transition: Experience from the Renewable Energy and Energy Efficiency Partnership (REEEP) , 2010 .

[23]  Rodney H. G. Tan,et al.  A simplified approach for fundamental photovoltaic module performance analysis , 2014, 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA).

[24]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[25]  M'Hammed Sahnoun,et al.  Quality control planning to prevent excessive scrap production , 2014 .

[26]  Guillermo Rus,et al.  Nanotechnology for sustainable energy , 2009 .

[27]  Andrew Blakers,et al.  A review of thin-film crystalline silicon for solar cell applications. Part 2: Foreign substrates , 2001 .

[28]  E. Skoplaki,et al.  ON THE TEMPERATURE DEPENDENCE OF PHOTOVOLTAIC MODULE ELECTRICAL PERFORMANCE: A REVIEW OF EFFICIENCY/ POWER CORRELATIONS , 2009 .

[29]  L. H. Stember,et al.  Reliability considerations in the design of solar photovoltaic power systems , 1981 .

[30]  D. O. Akinyele,et al.  Clean development mechanism projects for developing countries: Potential for carbon emissions mitigation and sustainable development , 2014, 2014 Eighteenth National Power Systems Conference (NPSC).

[31]  Arthur J. Frank,et al.  Photochemical solar cells based on dye-sensitization of nanocrystalline TiO2 , 2008 .

[32]  Michael Köhl,et al.  Impact of Permeation Properties and Backsheet-Encapsulant Interactions on the Reliability of PV Modules , 2012 .

[33]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[34]  Marwan M. Mahmoud,et al.  Field experience on solar electric power systems and their potential in Palestine , 2003 .

[35]  F. Ghani,et al.  On the influence of temperature on crystalline silicon solar cell characterisation parameters , 2015 .

[36]  B. K. Hodge,et al.  Alternative Energy Systems and Applications , 2009 .

[37]  Danny H.W. Li,et al.  Analysis of the operational performance and efficiency characteristic for photovoltaic system in Hong Kong , 2005 .

[38]  Kosuke Kurokawa,et al.  A comparative study on life cycle analysis of 20 different PV modules installed at the Hokuto mega‐solar plant , 2011 .

[39]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[40]  Emma Daly Life cycle cost analysis of a stand-alone PV system in rural Kenya , 2013 .

[41]  Thomas R. Betts,et al.  Irradiance modelling for individual cells of shaded solar photovoltaic arrays , 2014 .

[42]  Nebojsa Nakicenovic,et al.  Sustainable energy for all , 2012 .

[43]  Ruud Weijermars EditorialIntroduction to Energy Strategy Reviews themed issue “Sustainable Energy System Changes” , 2014 .

[44]  Guy Beaucarne,et al.  Back‐contact solar cells: a review , 2006 .

[45]  Tom Markvart,et al.  Practical handbook of photovoltaics : fundamentals and applications , 2003 .

[46]  Tullio Tolio,et al.  Design and management of manufacturing systems for production quality , 2014 .

[47]  Hao Zhang,et al.  A conceptual model for assisting sustainable manufacturing through system dynamics , 2013 .

[48]  Andrew Blakers,et al.  Constant voltage I-V curve flash tester for solar cells , 2004 .

[49]  Ramesh Rayudu,et al.  Review of energy storage technologies for sustainable power networks , 2014 .

[50]  Jianhua Zhao,et al.  Recent advances of high-efficiency single crystalline silicon solar cells in processing technologies and substrate materials , 2004 .

[51]  S. D. Probert,et al.  Integrated PV and gas-turbine system for satisfying peak-demands , 2003 .

[52]  Lorenzo Ciani,et al.  Electrical performances optimization of Photovoltaic Modules with FMECA approach , 2013 .

[53]  Rodney H. G. Tan,et al.  Solar irradiance estimation based on photovoltaic module short circuit current measurement , 2013, 2013 IEEE International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA).

[54]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[55]  Hugh Rudnick Access to Electricity: Making the Expansion Worldwide [Guest Editorial] , 2014 .

[56]  Nicolas Wyrsch,et al.  Recent progress on microcrystalline solar cells , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[57]  Ewa Klugmann-Radziemska,et al.  Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules , 2010 .

[58]  Bin-Juine Huang,et al.  Feasibility study of one axis three positions tracking solar PV with low concentration ratio reflector , 2007 .

[59]  Anna Stoppato,et al.  Life cycle assessment of photovoltaic electricity generation , 2008 .

[60]  S. M. Afazov,et al.  Modelling and simulation of manufacturing process chains , 2013 .

[61]  Hafiz Muhammad Ali,et al.  Comparison of Performance Measurements of Photovoltaic Modules during Winter Months in Taxila, Pakistan , 2014 .

[62]  Antonio Luque,et al.  Handbook of photovoltaic science and engineering , 2011 .

[63]  Roberto Zilles,et al.  Performance analysis of a 7‐kW crystalline silicon generator after 17 years of operation in Madrid , 2014 .

[64]  Navid R. Moheimani,et al.  Sustainable solar energy conversion to chemical and electrical energy , 2013 .

[65]  Clifford W. Hansen,et al.  SENSITIVITY OF SINGLE DIODE MODELS FOR PHOTOVOLTAIC MODULES TO METHOD USED FOR PARAMETER ESTIMATION. , 2013 .

[66]  Aldo Di Carlo,et al.  Comparative analysis of the outdoor performance of a dye solar cell mini‐panel for building integrated photovoltaics applications , 2015 .

[67]  C. Droz,et al.  Electrical and microstructural characterisation of microcrystalline silicon layers and solar cells , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[68]  Vladimir M. Aroutiounian,et al.  Studies of the photocurrent in quantum dot solar cells by the application of a new theoretical model , 2005 .

[69]  Toshio Matsushima,et al.  Concentrating solar module with horizontal reflectors , 2003 .

[70]  A. Goetzberger,et al.  Photovoltaic materials, history, status and outlook , 2003 .

[71]  Arvind Shah,et al.  Amorphous solar cells, the micromorph concept and the role of VHF-GD deposition technique , 2004 .

[72]  Xiao Wei Sun,et al.  Directly assembled CdSe quantum dots on TiO2 in aqueous solution by adjusting pH value for quantum dot sensitized solar cells , 2009 .

[73]  K. Zweibel,et al.  Progress and issues in polycrystalline thin-film PV technologies , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[74]  Daniel Feuermann,et al.  High-concentration photovoltaic designs based on miniature parabolic dishes , 2001 .

[75]  Taehoon Hong,et al.  Framework for the analysis of the potential of the rooftop photovoltaic system to achieve the net‐zero energy solar buildings , 2014 .

[76]  A. Reinders,et al.  A comparison of 15 polymers for application in photovoltaic modules in PV-powered boats , 2012 .

[77]  S.M. Mahajan,et al.  Nanotechnology in the Development of Photovoltaic Cells , 2007, 2007 International Conference on Clean Electrical Power.

[78]  John A. Mathews,et al.  Knowledge flows in the solar photovoltaic industry: Insights from patenting by Taiwan, Korea, and China , 2012 .

[79]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[80]  Junsin Yi,et al.  Solar Cells Fabrication on Textured Tricrystalline Silicon Wafers Using a Different Wet Texturing Technique , 2011 .

[81]  Vijay Devabhaktuni,et al.  Solar energy: Trends and enabling technologies , 2013 .

[82]  D. O. Akinyele,et al.  Distributed photovoltaic power generation for energy-poor households: The Nigerian perspective , 2013, 2013 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC).

[83]  K. Kiefer,et al.  Power characteristics of PV ensembles: experiences from the combined power production of 100 grid connected PV systems distributed over the area of Germany , 2001 .

[84]  Seddik Bacha,et al.  Forecasting photovoltaic array power production subject to mismatch losses , 2010 .

[85]  E. Muljadi,et al.  A cell-to-module-to-array detailed model for photovoltaic panels , 2012 .

[86]  Ranko Goic,et al.  review of solar photovoltaic technologies , 2011 .

[87]  Joshua M. Pearce,et al.  Producer Responsibility and Recycling Solar Photovoltaic Modules , 2010 .

[88]  D. O. Akinyele,et al.  Decentralized energy generation for end-use applications: Economic, social and environmental benefits assessment , 2014, 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA).

[89]  H. H. Zeineldin,et al.  A Simple Approach to Modeling and Simulation of Photovoltaic Modules , 2012, IEEE Transactions on Sustainable Energy.

[90]  Philip C. Eames,et al.  Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices , 2007 .

[91]  F. Miller,et al.  Performance analysis and preliminary design optimization of a Small Particle Heat Exchange Receiver for solar tower power plants , 2015 .

[92]  Gilbert M. Masters,et al.  Renewable and Efficient Electric Power Systems , 2004 .

[93]  M. Tanrioven,et al.  Reliability and cost-benefits of adding alternate power sources to an independent micro-grid community , 2005 .

[94]  V. K. Sethi,et al.  Use of Nanotechnology in Solar PV Cell , 2011 .

[95]  C. Ferekides,et al.  Thin‐film CdS/CdTe solar cell with 15.8% efficiency , 1993 .

[96]  Armin G. Aberle,et al.  Crystalline silicon solar cells : advanced surface passivation and analysis , 1999 .

[97]  J. I. Rosell,et al.  Design and simulation of a low concentrating photovoltaic/thermal system , 2005 .

[98]  V. Quaschning Technical and economical system comparison of photovoltaic and concentrating solar thermal power systems depending on annual global irradiation , 2004 .

[99]  Emanuela Colombo,et al.  Sustainable energy in Africa: A comprehensive data and policies review , 2014 .

[100]  S. K. Deb Recent developments in high eficiency photovoltaic cells , 1998 .

[101]  Priyank V. Kumar,et al.  Preparation of microcrystalline single junction and amorphous-microcrystalline tandem silicon solar cells entirely by hot-wire CVD , 2004 .

[102]  W. M. Rohouma,et al.  Comparative study of different PV modules configuration reliability , 2007 .

[103]  Nasrudin Abd Rahim,et al.  Progress in solar PV technology: Research and achievement , 2013 .

[104]  Gayeon Kim,et al.  A novel two-mode MPPT control algorithm based on comparative study of existing algorithms , 2004 .

[105]  F. Bandou,et al.  Test Performance Electrical of the Photovoltaic Module in Two Different Environments , 2013 .

[106]  P. A. Iles,et al.  Evolution of space solar cells , 2001 .

[107]  Chin‐Yi Tsai,et al.  Development of Amorphous/Microcrystalline Silicon Tandem Thin-Film Solar Modules with Low Output Voltage, High Energy Yield, Low Light-Induced Degradation, and High Damp-Heat Reliability , 2014 .

[108]  J. O. Petinrin,et al.  Renewable energy potentials in Nigeria: Meeting rural energy needs , 2014 .

[109]  K. Polsani,et al.  A case study for micro‐grid PV: lessons learned from a rural electrification project in India , 2014 .

[110]  Shirish A. Pethe,et al.  Comparative study of various PV technologies in terms of energy yield and annual degradation , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[111]  D. Dimova‐Malinovska,et al.  The state-of-the-art and future development of the photovoltaic technologies – the route from crystalline to nanostructured and new emerging materials , 2010 .