Zonotopes as bounding volumes

Zonotopes are centrally symmetric polytopes with a very special structure: they are Minkowski sums of line segments. In this paper we propose to use zonotopes as bounding volumes for geometry in collision detection and other applications where the spatial relationship between two pieces of geometry is important. We show how to construct optimal, or approximately optimal zonotopes enclosing given set of points or other geometry. We also show how zonotopes can be used for efficient collision testing, based on their representation via their defining line segments --- without ever building their explicit description as polytopes. This implicit representation adds flexibility, power, and economy to the use of zonotopes as bounding volumes.

[1]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[2]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[3]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[4]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[5]  Philip M. Hubbard,et al.  Collision Detection for Interactive Graphics Applications , 1995, IEEE Trans. Vis. Comput. Graph..

[6]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[7]  Leonidas J. Guibas,et al.  Separation-sensitive collision detection for convex objects , 1998, SODA '99.

[8]  P. McMullen,et al.  Estimating the Sizes of Convex Bodies from Projections , 1983 .

[9]  R. Dudley Metric Entropy of Some Classes of Sets with Differentiable Boundaries , 1974 .

[10]  Dinesh Manocha,et al.  I-COLLIDE: an interactive and exact collision detection system for large-scale environments , 1995, I3D '95.

[11]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[12]  G. Ziegler Lectures on Polytopes , 1994 .

[13]  Richard L. Grimsdale,et al.  Collision Detection for Animation using Sphere‐Trees , 1995, Comput. Graph. Forum.

[14]  J. Lindenstrauss,et al.  Approximation of zonoids by zonotopes , 1989 .

[15]  Joseph S. B. Mitchell,et al.  Efficient Collision Detection Using Bounding Volume Hierarchies of k-DOPs , 1998, IEEE Trans. Vis. Comput. Graph..

[16]  Bernd Sturmfels,et al.  A polyhedral method for solving sparse polynomial systems , 1995 .

[17]  Endre Szemerédi,et al.  An Optimal-Time Algorithm for Slope Selection , 1989, SIAM J. Comput..

[18]  Stephen Cameron,et al.  Collision detection by four-dimensional intersection testing , 1990, IEEE Trans. Robotics Autom..

[19]  Brown UniversityProvidence Space-Time Bounds for Collision Detection , 1993 .

[20]  Jan van Leeuwen,et al.  Dynamically maintaining configurations in the plane (Detailed Abstract) , 1980, STOC '80.