Thermodynamic modeling of boric acid and selected metal borate systems

A comprehensive thermodynamic model, referred to as the mixed-solvent electrolyte (MSE) model, has been applied to calculate phase equilibria, speciation, and other thermodynamic properties of selected systems that are of interest for understanding the chemistry of salt lakes and natural waters. In particular, solubilities and chemical speciation have been analyzed for various boron-containing systems, which represent an important subset of solution chemistry for such applications. The model has been shown to reproduce the speciation, solubility, and vapor–liquid equilibrium (VLE) data in the boric acid + water system over wide ranges of temperature and concentration. Specifically, solubilities have been accurately represented in the full concentration range of the B2O3 + H2O system (xB2O3 = 0~1), which includes H3BO3. The accuracy of the model has also been demonstrated by calculating solubilities in various aqueous borate systems, i.e., MnO + B2O3 + H2O (where M = Li, Na, Ca, Mg), and their mixtures with a chloride salt or an acid (i.e., LiCl, NaCl, HCl). The model predicts the effects of chemical speciation, temperature, and concentrations of various acid, base, and salt components on the formation of competing solid phases.

[1]  Pei-ming Wang,et al.  Modeling chemical equilibria, phase behavior, and transport properties in ionic liquid systems , 2011 .

[2]  J. E. Dutrizac,et al.  Development of an MSE-based chemical model for the solubility of calcium sulphate in mixed chloride–sulphate solutions , 2008 .

[3]  J. E. Dutrizac,et al.  Modelling of Calcium Sulphate Solubility in Concentrated Multi-component Sulphate Solutions , 1996 .

[4]  J. Kosinski,et al.  Modeling acid-base equilibria and phase behavior in mixed-solvent electrolyte systems , 2007 .

[5]  D. A. Palmer,et al.  Phase Behavior of Aqueous Na–K–Mg–Ca–Cl–NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling , 2007 .

[6]  F. Millero,et al.  The Solubility of Boric Acid in Electrolyte Solutions , 2006 .

[7]  R. Young,et al.  Modeling phase equilibria and speciation in mixed-solvent electrolyte systems: II. Liquid–liquid equilibria and properties of associating electrolyte solutions☆ , 2006 .

[8]  V. Papangelakis,et al.  Solubility of Pb(II) and Ni(II) in Mixed Sulfate−Chloride Solutions with the Mixed Solvent Electrolyte Model , 2006 .

[9]  V. Papangelakis,et al.  Thermodynamic equilibrium of the O2–ZnSO4–H2SO4–H2O system from 25 to 250 °C , 2005 .

[10]  Lijuan Li,et al.  Isopiestic determination of the osmotic coefficients and Pitzer model representation for Li2B4O7(aq) at T = 298.15 K , 2005 .

[11]  S. Sang,et al.  Solubility Investigations in the Systems K2B4O7 + Li2B4O7 + H2O and Na2B4O7 + Li2B4O7 + H2O at T = 288 K , 2004 .

[12]  I. Abdulagatov,et al.  Densities and Apparent Molar Volumes of Aqueous H3BO3 Solutions at Temperatures from 296 to 573 K and at Pressures up to 48 MPa , 2004 .

[13]  R. Young,et al.  Modeling phase equilibria and speciation in mixed-solvent electrolyte systems , 2004 .

[14]  A. Apelblat,et al.  Solubilities and vapour pressures of saturated aqueous solutions of sodium tetraborate, sodium carbonate, and magnesium sulfate and freezing-temperature lowerings of sodium tetraborate and sodium carbonate solutions , 2003 .

[15]  Andrzej Anderko,et al.  A speciation-based model for mixed-solvent electrolyte systems , 2002 .

[16]  Marshall Rafal,et al.  Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes , 2002 .

[17]  P. Song,et al.  Thermodynamics of ionic association 1: The standard association constant of the ion pair Li+B(OH)4− , 2000 .

[18]  W. T. Lindsay,et al.  Solubility of Lithium Monoborate in High-Temperature Water , 2000 .

[19]  R. Fernández-Prini,et al.  Distribution ofB(OH)3between water and steam at high temperatures , 1999 .

[20]  P. Song,et al.  Thermodynamic study of aqueous borates. III. The standard association constant of the ion pair Li+B(OH)4- , 1997 .

[21]  A. Sheleg,et al.  Specific heat of LiB3O5 crystals in the temperature interval 80–300 K , 1997 .

[22]  Everett L. Shock,et al.  Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb , 1997 .

[23]  M. Donohue,et al.  Recent Advances in Modeling Thermodynamic Properties of Aqueous Strong Electrolyte Systems , 1997 .

[24]  J. Ganopolsky,et al.  Volumetric properties of aqueous electrolytes at high temperature. II. B(OH)3 and B(OH)3−NaB(OH)4−NaOH mixtures up to 523 K , 1996 .

[25]  J. Schott,et al.  Experimental determination of the stability constants of NaSO4− and NaB (OH)40 in hydrothermal solutions using a new high-temperature sodium-selective glass electrode — Implications for boron isotopic fractionation , 1995 .

[26]  V. Majer,et al.  Volumes and heat capacities of H3BO3(aq) at temperatures from 298.15 K to 705 K and at pressures to 35 MPa , 1995 .

[27]  O. Weres Vapor pressure, speciation, and chemical activities in highly concentrated sodium borate solutions at 277 and 317°C , 1995 .

[28]  C. Alcock,et al.  Thermodynamic Properties of Individual Substances , 1994 .

[29]  D. Macdonald,et al.  Measurement of pH in subcritical and supercritical aqueous systems , 1992 .

[30]  B. K. Harrison,et al.  ESTIMATION OF LIQUID AND SOLID HEAT CAPACITIES USING A MODIFIED KOPP'S RULE , 1992 .

[31]  G. Atkinson,et al.  The effect of pressure on the formation of alkali metal borate ion pairs at 25°C , 1990 .

[32]  I. Barin Thermochemical data of pure substances , 1989 .

[33]  J. Gallagher,et al.  NBS/NRC Steam Tables: Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water in SI Units, , 1984 .

[34]  V. A. Medvedev,et al.  Thermodynamic properties of individual substances , 1982 .

[35]  Harry Julius Emeléus,et al.  Advances in Inorganic Chemistry and Radiochemistry , 1982 .

[36]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes by high pressures and temperatures; IV, Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600 degrees C and 5kb , 1981 .

[37]  D. Macdonald,et al.  The Measurement of pH in Aqueous Systems at Elevated Temperatures Using Palladium Hydride Electrodes , 1980 .

[38]  H. Corti,et al.  Mobilities and ion-pairing in LiB(OH)4 and NaB(OH)4 aqueous solutions. A conductivity study , 1980 .

[39]  H. Corti,et al.  Properties of the borate ion in dilute aqueous solutions , 1980 .

[40]  C. Baes,et al.  The hydrolysis of cations , 1986 .

[41]  E. Reardon Dissociation constants for alkali earth and sodium borate ion pairs from 10 to 50°C , 1976 .

[42]  H. Helgeson,et al.  Theoretical prediction of thermodynamic properties of aqueous electrolytes at high pressures and temperatures. III. Equation of state for aqueous species at infinite dilution , 1976 .

[43]  J. Prausnitz,et al.  Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems , 1975 .

[44]  H. Helgeson,et al.  Theoretical prediction of the thermodynamic behavior of aqueous electrolytes at high pressures and temperatures; I, Summary of the thermodynamic/electrostatic properties of the solvent , 1974 .

[45]  F. Millero,et al.  Molal volume of aqueous boric acid-sodium chloride solutions , 1974 .

[46]  F. Millero,et al.  The effect of pressure on the ionization of boric acid in aqueous solutions from molal-volume data , 1974 .

[47]  A. J. Ellis,et al.  Partial molal volumes of ions in hydrothermal solutions , 1972 .

[48]  C. F. Baes,et al.  Acidity measurements at elevated temperatures. VI. Boric acid equilibriums , 1972 .

[49]  D. R. Stull,et al.  Low-temperature heat capacities of 15 inorganic compounds , 1970 .

[50]  R. F. Platford Osmotic and activity coefficients of some simple borates in aqueous solution at 25 , 1969 .

[51]  Nelson P. Nies,et al.  Solubility isotherms in the system sodium oxide-boric oxide-water. Revised solubility-temperature curves of boric acid, borax, sodium pentaborate, and sodium metaborate , 1967 .

[52]  W. Gale,et al.  The System Lithium Oxide–Boric Oxide–Water , 1955 .

[53]  H. L. Johnston,et al.  Low Temperature Heat Capacities of Inorganic Solids. IV. Heat Capacities and Entropies of Lithium Hydroxide and of Lithium Hydroxide Monohydrate from 15 to 300°K. Third Law Check on the Entropies Through the Reaction LiOH + H2O (Gas) = LiOH·H2O1 , 1950 .

[54]  H. L. Johnston,et al.  Low Temperature Heat Capacities of Inorganic Solids.1 I. The Heat Capacity of Boric Acid from 16 to 296°K. Description of The Ohio State University Solid Calorimeters , 1950 .

[55]  H. Schulz,et al.  Zur Kenntnis der Borsäuren und borsauren Alkalisalze XI: Das System NaBO2H2O , 1943 .

[56]  S. C. Lind Solubilities of Inorganic and Metal Organic Compounds, Vol. I. By Atherton Seidell. , 1942 .

[57]  A. Benrath Über die Löslichkeit von Salzen und Salzgemischen bei Temperaturen oberhalb von 100°. IV , 1942 .

[58]  W. C. Blasdale,et al.  The Solubility Curves of Boric Acid and the Borates of Sodium , 1939 .

[59]  M. Leon Crystalline boric oxide , 1937 .

[60]  H. Menzel Zur Kenntnis der Borsäuren und borsauren Alkalisalze. III. Die Alkalimono‐ und ‐polyborate in festem Zustand , 1927 .

[61]  H. Menzel Zur Kenntnis der Borsäuren und borsauren Alkalisalze. II. Die Alkaliborate in wäßriger Lösung , 1927 .

[62]  H. Menzel Zur Kenntnis der Borsäuren und borsauren Alkalisalze. I. Die freien Borsäuren , 1927 .

[63]  A. Rosenheim,et al.  Über Polyborate in wäßriger Lösung. (Zur Kenntnis der Iso- und Heteropolysäuren. XVII. Mitteilung) , 1921 .

[64]  W. Herz Die Löslichkeitsbeeinflussung der Borsäure durch Chloride , 1910 .

[65]  W. Herz Über die Löslichkeit von Borsäure in Salzsäure , 1902 .