Geometry of Fisher Information Metric and the Barycenter Map

Geometry of Fisher metric and geodesics on a space of probability measures defined on a compact manifold is discussed and is applied to geometry of a barycenter map associated with Busemann function on an Hadamard manifold \(X\). We obtain an explicit formula of geodesic and then several theorems on geodesics, one of which asserts that any two probability measures can be joined by a unique geodesic. Using Fisher metric and thus obtained properties of geodesics, a fibre space structure of barycenter map and geodesical properties of each fibre are discussed. Moreover, an isometry problem on an Hadamard manifold \(X\) and its ideal boundary \(\partial X\)—for a given homeomorphism \(\Phi\) of \(\partial X\) find an isometry of \(X\) whose \(\partial X\)-extension coincides with \(\Phi\)—is investigated in terms of the barycenter map.

[1]  Ricardo Ma né On the topological entropy of geodesic flows , 1997 .

[2]  Lizhen Ji,et al.  Compactifications of Symmetric Spaces , 1998 .

[3]  Lieven Vanhecke,et al.  Generalized Heisenberg Groups and Damek-Ricci Harmonic Spaces , 1995 .

[4]  Mitsuhiro Itoh,et al.  Information Geometry of Poisson Kernels on Damek-Ricci Spaces , 2010 .

[5]  A. Douady,et al.  Conformally natural extension of homeomorphisms of the circle , 1986 .

[6]  Thomas Friedrich,et al.  Die Fisher‐Information und symplektische Strukturen , 1991 .

[7]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[8]  Young Jin Suh,et al.  Horospheres and hyperbolicity of Hadamard manifolds , 2014 .

[9]  Carlo Cafaro,et al.  Jacobi fields on statistical manifolds of negative curvature , 2007 .

[10]  H. Satoh,et al.  Fisher information geometry, Poisson kernel and asymptotical harmonicity , 2011 .

[11]  Mitsuhiro Itoh,et al.  Information geometry of Busemann-barycenter for probability measures , 2015 .

[12]  A. Fathi,et al.  Structure of the group of homeomorphisms preserving a good measure on a compact manifold , 1980 .

[13]  Marc Arnaudon,et al.  Medians and Means in Riemannian Geometry: Existence, Uniqueness and Computation , 2011, 1111.3120.

[14]  I. Holopainen Riemannian Geometry , 1927, Nature.

[15]  Ernst Heintze,et al.  Geometry of horospheres , 1977 .

[16]  S. Yau,et al.  Lectures on Differential Geometry , 1994 .

[17]  Mitsuhiro Itoh,et al.  Fisher information geometry of the barycenter map , 2014 .

[18]  Gérard Besson,et al.  Entropies et rigidités des espaces localement symétriques de courbure strictement négative , 1995 .

[19]  François Ledrappier,et al.  Harmonic measures and bowen-margulis measures , 1990 .

[20]  S. Helgason Differential Geometry and Symmetric Spaces , 1964 .

[21]  G. Besson,et al.  Minimal entropy and Mostow's rigidity theorems , 1996, Ergodic Theory and Dynamical Systems.

[22]  Mitsuhiro Itoh,et al.  Fisher information metric and Poisson kernels , 2008 .

[23]  F. Barbaresco Information Geometry of Covariance Matrix: Cartan-Siegel Homogeneous Bounded Domains, Mostow/Berger Fibration and Fréchet Median , 2013 .

[24]  M. Gromov,et al.  Manifolds of Nonpositive Curvature , 1985 .

[25]  P. Eberlein,et al.  Geodesic Flows in Manifolds of Nonpositive Curvature , 2000 .

[26]  A. Manning Topological entropy for geodesic flows , 1979 .

[27]  Jens Heber On harmonic and asymptotically harmonic homogeneous spaces , 2004 .

[28]  S. M. Ulam,et al.  Measure-Preserving Homeomorphisms and Metrical Transitivity , 1941 .

[29]  Mitsuhiro Itoh,et al.  Information Geometry of Barycenter Map , 2014 .

[30]  Harry Furstenberg,et al.  A POISSON FORMULA FOR SEMI-SIMPLE LIE GROUPS* , 1963 .

[31]  Z. Szabó,et al.  The Lichnerowicz conjecture on harmonic manifolds , 1990 .