Insect–machine hybrid system for understanding and evaluating sensory-motor control by sex pheromone in Bombyx mori

[1]  R. Kanzaki,et al.  Concentric zones for pheromone components in the mushroom body calyx of the moth brain , 2013, The Journal of comparative neurology.

[2]  N Ando,et al.  Odour-tracking capability of a silkmoth driving a mobile robot with turning bias and time delay , 2013, Bioinspiration & biomimetics.

[3]  Daisuke Miyamoto,et al.  Development of a Scheme and Tools to Construct a Standard Moth Brain for Neural Network Simulations , 2012, Comput. Intell. Neurosci..

[4]  A. Borst,et al.  Integration of binocular optic flow in cervical neck motor neurons of the fly , 2012, Journal of Comparative Physiology A.

[5]  Ryohei Kanzaki,et al.  Construction of a brain-machine hybrid system to evaluate adaptability of an insect , 2012, Robotics Auton. Syst..

[6]  Mikko Vähäsöyrinki,et al.  A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments , 2012, Scientific Reports.

[7]  Ryohei Kanzaki,et al.  Use of bilateral information to determine the walking direction during orientation to a pheromone source in the silkmoth Bombyx mori , 2012, Journal of Comparative Physiology A.

[8]  R. Kanzaki,et al.  Heterogeneity in dendritic morphology of moth antennal lobe projection neurons , 2011, The Journal of comparative neurology.

[9]  M. Ibbotson,et al.  Visual response properties of neck motor neurons in the honeybee , 2011, Journal of Comparative Physiology A.

[10]  Ryohei Kanzaki,et al.  A Single Sex Pheromone Receptor Determines Chemical Response Specificity of Sexual Behavior in the Silkmoth Bombyx mori , 2011, PLoS genetics.

[11]  Holger G. Krapp,et al.  An Experimental Platform to Study the Closed-loop Performance of Brain-machine Interfaces , 2011, Journal of visualized experiments : JoVE.

[12]  Michael R. Ibbotson,et al.  A Three-Dimensional Atlas of the Honeybee Neck , 2010, PloS one.

[13]  Ryohei Kanzaki,et al.  Neurons associated with the flip‐flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain , 2010, The Journal of comparative neurology.

[14]  A. Menini The Neurobiology of Olfaction , 2009 .

[15]  J. Kennedy The Visual Responses of Flying Mosquitoes. , 2009 .

[16]  R. Kanzaki,et al.  Modular subdivision of mushroom bodies by kenyon cells in the silkmoth , 2009, The Journal of comparative neurology.

[17]  R. Kanzaki,et al.  Constancy and variability of glomerular organization in the antennal lobe of the silkmoth , 2009, Cell and Tissue Research.

[18]  R. Andrew Russell,et al.  Robot Odor Localization: A Taxonomy and Survey , 2008, Int. J. Robotics Res..

[19]  H. Krapp,et al.  Visuomotor Transformation in the Fly Gaze Stabilization System , 2008, PLoS biology.

[20]  R. Cardé,et al.  Navigational Strategies Used by Insects to Find Distant, Wind-Borne Sources of Odor , 2008, Journal of Chemical Ecology.

[21]  R. Kanzaki,et al.  GFP Labeling of Neurosecretory Cells with the GAL4/UAS System in the Silkmoth Brain Enables Selective Intracellular Staining of Neurons , 2008, Zoological science.

[22]  R. Kanzaki,et al.  Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori , 2008, Journal of Comparative Physiology A.

[23]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[24]  Ryohei Kanzaki,et al.  Understanding and Reconstruction of the Mobiligence of Insects Employing Multiscale Biological Approaches and Robotics , 2008, Adv. Robotics.

[25]  F Mondada,et al.  Social Integration of Robots into Groups of Cockroaches to Control Self-Organized Choices , 2007, Science.

[26]  J. Butala,et al.  EMG spike time difference based feedback control , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[27]  Ryohei Kanzaki,et al.  Insect-Controlled Robot - Evaluation of Adaptation Ability - , 2007, J. Robotics Mechatronics.

[28]  M. Srinivasan,et al.  The morphology, physiology and function of suboesophageal neck motor neurons in the honeybee , 2007, Journal of Comparative Physiology A.

[29]  Massimo Vergassola,et al.  ‘Infotaxis’ as a strategy for searching without gradients , 2007, Nature.

[30]  S. Laughlin,et al.  A motion-sensitive neurone responds to signals from the two visual systems of the blowfly, the compound eyes and ocelli , 2006, Journal of Experimental Biology.

[31]  Ryohei Kanzaki,et al.  Neural control mechanisms of the pheromone‐triggered programmed behavior in male silkmoths revealed by double‐labeling of descending interneurons and a motor neuron , 2005, The Journal of comparative neurology.

[32]  Kazushige Touhara,et al.  Insect Sex-Pheromone Signals Mediated by Specific Combinations of Olfactory Receptors , 2005, Science.

[33]  R. Kanzaki,et al.  Immunocytochemical Identification of Neuroactive Substances in the Antennal Lobe of the Male Silkworm Moth Bombyx mori , 2005, Zoological science.

[34]  Ryohei Kanzaki,et al.  Pheromone processing center in the protocerebrum of Bombyx mori revealed by nitric oxide‐induced anti‐cGMP immunocytochemistry , 2005, The Journal of comparative neurology.

[35]  M. Takahata,et al.  Further exploration into the adaptive design of the arthropod “microbrain”: I. Sensory and memory-processing systems , 2004, Zoological science.

[36]  Kazushige Touhara,et al.  Identification and functional characterization of a sex pheromone receptor in the silkmoth Bombyx mori. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  Berthold Hedwig,et al.  Complex auditory behaviour emerges from simple reactive steering , 2004, Nature.

[38]  B. Webb,et al.  Sensorimotor control of navigation in arthropod and artificial systems. , 2004, Arthropod structure & development.

[39]  Ryohei Kanzaki,et al.  Serotonin modifies the sensitivity of the male silkmoth to pheromone , 2004, Journal of Experimental Biology.

[40]  Ryohei Kanzaki,et al.  Neural basis of odor-source searching behavior in insect brain systems evaluated with a mobile robot. , 2004, Chemical senses.

[41]  Kei Ito,et al.  Integration of Chemosensory Pathways in the Drosophila Second-Order Olfactory Centers , 2004, Current Biology.

[42]  Ryohei Kanzaki,et al.  Projections to higher olfactory centers from subdivisions of the antennal lobe macroglomerular complex of the male silkmoth. , 2003, Chemical senses.

[43]  R. Kanzaki,et al.  Visualization of modulatory effects of serotonin in the silkmoth antennal lobe , 2003, Journal of Experimental Biology.

[44]  Mark A Willis,et al.  A method for recording behavior and multineuronal CNS activity from tethered insects flying in virtual space , 2002, Journal of Neuroscience Methods.

[45]  R. Kanzaki,et al.  Morphology and physiology of the serotonin-immunoreactive putative antennal lobe feedback neuron in the male silkmoth Bombyx mori. , 2002, Chemical senses.

[46]  Richard Axel,et al.  Spatial Representation of the Glomerular Map in the Drosophila Protocerebrum , 2002, Cell.

[47]  L. Luo,et al.  Representation of the Glomerular Olfactory Map in the Drosophila Brain , 2002, Cell.

[48]  T. Baker,et al.  Host plant volatiles synergize responses of sex pheromone-specific olfactory receptor neurons in male Helicoverpa zea , 2002, Journal of Comparative Physiology A.

[49]  R. Andrew Russell,et al.  Tracking chemical plumes in constrained environments , 2001, Robotica.

[50]  N. Vickers Mechanisms of animal navigation in odor plumes. , 2000, The Biological bulletin.

[51]  P. Kloppenburg,et al.  Serotonin Enhances Central Olfactory Neuron Responses to Female Sex Pheromone in the Male Sphinx Moth Manduca sexta , 1999, The Journal of Neuroscience.

[52]  Masakazu Takahata,et al.  Exploration into the Adaptive Design of the Arthropod “Microbrain” , 1999 .

[53]  M. Mizunami,et al.  Sensory responses and movement-related activities in extrinsic neurons of the cockroach mushroom bodies , 1999, Journal of Comparative Physiology.

[54]  R. Kanzaki,et al.  Physiological and morphological characterization of olfactory descending interneurons of the male silkworm moth, Bombyx mori , 1999, Journal of Comparative Physiology A.

[55]  Ryohei Kanzaki,et al.  Synthesis of the pheromone-oriented behavior of silkworm moths by a mobile robot with moth antennae as pheromone sensors , 1999 .

[56]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Activity and identities of neurons recorded in freely moving animals , 1998, The Journal of comparative neurology.

[57]  R. Kanzaki,et al.  Coordination of flipflopping neural signals and head turning during pheromone-mediated walking in a male silkworm moth Bombyx mori , 1998, Journal of Comparative Physiology A.

[58]  J. Hildebrand,et al.  Multitasking in the Olfactory System: Context-Dependent Responses to Odors Reveal Dual GABA-Regulated Coding Mechanisms in Single Olfactory Projection Neurons , 1998, The Journal of Neuroscience.

[59]  R. Kanzaki,et al.  Coordination of wing motion and walking suggests common control of zigzag motor program in a male silkworm moth , 1998, Journal of Comparative Physiology A.

[60]  T. Baker,et al.  Latencies of behavioral response to interception of filaments of sex pheromone and clean air influence flight track shape in Heliothis virescens (F.) males , 1996, Journal of Comparative Physiology A.

[61]  Ryohei Kanzaki,et al.  Pheromone-Triggered ‘Fiipflopping’ Neural Signals Correlate with Activities of Neck Motor Neurons of a Male Moth, Bombyx mori , 1996 .

[62]  H. Ishida,et al.  Odour-source localization system mimicking behaviour of silkworm moth , 1995 .

[63]  C. Gilbert,et al.  Oculomotor control in calliphorid flies: Head movements during activation and inhibition of neck motor neurons corroborate neuroanatomical predictions , 1995, The Journal of comparative neurology.

[64]  W. Gronenberg,et al.  Oculomotor control in calliphorid flies: Organization of descending neurons to neck motor neurons responding to visual stimuli , 1995, The Journal of comparative neurology.

[65]  R. Cardé,et al.  Influence of plume structure and pheromone concentration on upwind flight of Cadra cautella males , 1995 .

[66]  J. Hildebrand,et al.  Modulatory effects of 5-hydroxytryptamine on voltage-activated currents in cultured antennal lobe neurones of the sphinx moth Manduca sexta. , 1995, The Journal of experimental biology.

[67]  R. Kanzaki,et al.  Morphological and physiological properties of pheromone-triggered flipflopping descending interneurons of the male silkworm moth, Bombyx mori , 1994, Journal of Comparative Physiology A.

[68]  T. Baker,et al.  Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[69]  R. Cardé,et al.  Fine-scale structure of pheromone plumes modulates upwind orientation of flying moths , 1994, Nature.

[70]  J. Hildebrand,et al.  Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta , 1993, Journal of Comparative Physiology A.

[71]  T. Baker,et al.  MaleHeliothis virescens maintain upwind flight in response to experimentally pulsed filaments of their sex pheromone (Lepidoptera: Noctuidae) , 1992, Journal of Insect Behavior.

[72]  Ryohei Kanzaki,et al.  Self-generated Zigzag Turning of Bombyx mori Males during Pheromone-mediated Upwind Walking(Physology) , 1992 .

[73]  Nicholas J. Strausfeld,et al.  Descending pathways connecting the male-specific visual system of flies to the neck and flight motor , 1991, Journal of Comparative Physiology A.

[74]  E. A. Arbas,et al.  Odor-modulated upwind flight of the sphinx moth, Manduca sexta L. , 1991, Journal of Comparative Physiology A.

[75]  D. Schneider,et al.  Sexual dimorphism in neuronal projections from the antennae of silk moths (Bombyx mori, Antheraea polyphemus) and the gypsy moth (Lymantria dispar) , 1987, Cell and Tissue Research.

[76]  N. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. I: Muscles and motor neurons , 1987 .

[77]  Nicholas J. Strausfeld,et al.  The neck motor system of the fly Calliphora erythrocephala. II: Sensory organization , 1987 .

[78]  T. L. Payne,et al.  Mechanisms in Insect Olfaction , 1986 .

[79]  T. Baker,et al.  Optomotor anemotaxis polarizes self‐steered zigzagging in flying moths , 1984 .

[80]  Robert M. Olberg,et al.  Pheromone-triggered flip-flopping interneurons in the ventral nerve cord of the silkworm moth,Bombyx mori , 1983, Journal of comparative physiology.

[81]  J. Kennedy Zigzagging and casting as a programmed response to wind‐borne odour: a review , 1983 .

[82]  T. Baker,et al.  Pheromone Source Location by Flying Moths: A Supplementary Non-Anemotactic Mechanism , 1982, Science.

[83]  J. Murlis,et al.  Fine‐scale structure of odour plumes in relation to insect orientation to distant pheromone and other attractant sources , 1981 .

[84]  Y. Obara Bombyx mori Mationg Dance : an Essential in Locationg the Female , 1979 .

[85]  M. Sanders Handbook of Sensory Physiology , 1975 .

[86]  P. Shepheard Control of head movement in the locust, Schistocerca gregaria. , 1974, The Journal of experimental biology.

[87]  J. Kennedy,et al.  Pheromone-Regulated Anemotaxis in Flying Moths , 1974, Science.

[88]  P. Shepheard Musculature and innervation of the neck of the desert locust, Schistocerca gregaria (Forskål) , 1973, Journal of morphology.

[89]  S. R. Farkas,et al.  Chemical Trail-Following by Flying Insects: A Mechanism for Orientation to a Distant Odor Source , 1972, Science.

[90]  Timothy Melano,et al.  Insect-Machine Interfacing , 2011 .

[91]  R. Kanzaki,et al.  Comprehensive morphological identification and GABA immunocytochemistry of antennal lobe local interneurons in Bombyx mori , 2008, The Journal of comparative neurology.

[92]  J. Hildebrand,et al.  Serotonin-induced changes in the excitability of cultured antennal-lobe neurons of the sphinx moth Manduca sexta , 2004, Journal of Comparative Physiology A.

[93]  J. Hildebrand,et al.  GABA-mediated synaptic inhibition of projection neurons in the antennal lobes of the sphinx moth,Manduca sexta , 2004, Journal of Comparative Physiology A.

[94]  N. J. Strausfeld,et al.  The neck motor system of the flyCalliphora erythrocephala , 2004, Journal of Comparative Physiology A.

[95]  Y. Yamazaki,et al.  Projection neurons originating from thermo‐ and hygrosensory glomeruli in the antennal lobe of the cockroach , 2003, The Journal of comparative neurology.

[96]  Chris Diorio,et al.  Computer Electronics Meet Animal Brains , 2003, Computer.

[97]  John Murtis,et al.  Odor Plumes and How Insects Use Them , 1992 .

[98]  G. Wendler,et al.  Visual Control of Compensatory Head Movements in the Sphinx Moth , 1990 .

[99]  T. Baker,et al.  COMPARISON OF MANOEUVRES USED BY WALKING VERSUS FLYING GRAPHOLITA MOLESTA MALES DURING PHEROMONE-MEDIATED UPWIND MOVEMENT , 1987 .

[100]  E. Kramer,et al.  Orientation of the Male Silkmoth to the Sex Attractant Bombykol , 1975 .

[101]  J. L. Eaton Nervous system of the head and thorax of the adult tobacco hornworm, Manduca sexta (Lepidoptera: Sphingidae) , 1974 .

[102]  V. A. Butenandt Uber den sexsual-lockstoff des seidenspinners Bombyx mori , 1959 .

[103]  K. Kaissling,et al.  Der Bau der Antenne des Seidenspinners Bombyx mori L. II. Sensillen, cuticulare Bildungen und innerer Bau , 1957 .