Closing the Case t = 3 for 3-D Spherical t-Designs Using a Result-Verifying Nonlinear Solver
暂无分享,去创建一个
[1] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[2] A. Frommer,et al. Symbolic–Numeric Techniques for Solving Nonlinear Systems , 2005 .
[3] G. Wildenhain. Bronstein, I. N., und K. A. Semendjajew: Taschenbuch der Mathematik. 5. Aufl., B. G. Teubner Verlagsgesellschaft, Leipzig 1962; 584 S., 430 Abb., Plastikeinband, DM 22,50 , 1964 .
[4] R. B. Kearfott. Rigorous Global Search: Continuous Problems , 1996 .
[5] M.A. Stadtherr,et al. Parallel Interval-Newton Using Message Passing: Dynamic Load Balancing Strategies , 2001, ACM/IEEE SC 2001 Conference (SC'01).
[6] Luc Jaulin,et al. Applied Interval Analysis , 2001, Springer London.
[7] F. Bertrand. Plans sphériques de force t et applications en statistique , 2007 .
[8] Thomas Beelitz,et al. Effiziente Methoden zum Verifizierten Lösen von Optimierungsaufgaben und Nichtlinearen Gleichungssystemen , 2006 .
[9] I N Bronstein,et al. Taschenbuch der Mathematik , 1966 .
[10] E. M. Rains,et al. Codes and invariant theory , 2003, math/0311046.
[11] Richard J Morris,et al. An evaluation of spherical designs for molecular-like surfaces. , 2006, Journal of molecular graphics & modelling.
[12] Gabriele Nebe,et al. On tight spherical designs , 2012, 1201.1830.
[13] Christian H. Bischof,et al. Efficient Task Scheduling in the Parallel Result-Verifying Solution of Nonlinear Systems , 2006, Reliab. Comput..
[14] Christian H. Bischof,et al. A Hybrid Approach for Efficient Robust Design of Dynamic Systems , 2007, SIAM Rev..
[15] N. J. A. Sloane,et al. McLaren’s improved snub cube and other new spherical designs in three dimensions , 1996, Discret. Comput. Geom..
[16] J. Seidel,et al. SPHERICAL CODES AND DESIGNS , 1991 .
[17] Pham Huu Tiep,et al. Symmetric Squares, Spherical Designs, and Lattice Minima , 2001 .
[19] Eero Hyvönen,et al. Constraint Reasoning Based on Interval Arithmetic: The Tolerance Propagation Approach , 1992, Artif. Intell..