Parsing MELL proof nets

We propose a new formulation for full (weakening and constants included) multiplicative and exponential (MELL) proof nets, allowing a complete set of rewriting rules to parse them. The recognizing grammar defined by such a rewriting system (confluent and strong normalizing on the new proof nets) gives a correctness criterion that we show equivalent to the Danos-Regnier one.

[1]  Andrea Masini,et al.  Proof nets, garbage, and computations , 1997, Theor. Comput. Sci..

[2]  Y. Lafont From proof-nets to interaction nets , 1995 .

[3]  Jean-Yves Girard,et al.  Linear Logic , 1987, Theor. Comput. Sci..

[4]  Stefano Guerrini,et al.  Correctness of multiplicative proof nets is linear , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[5]  Andrea Masini,et al.  On the fine structure of the exponential rule , 1995 .

[6]  Andrea Masini,et al.  Coherence for Sharing Proof Nets , 1996, RTA.

[7]  P. Lincoln Deciding provability of linear logic formulas , 1995 .

[8]  Patrick Lincoln,et al.  Constant-Only Multiplicative Linear Logic is NP-Complete , 1992, Theor. Comput. Sci..

[9]  Patrick Lincoln,et al.  Linear logic , 1992, SIGA.

[10]  Laurent Regnier,et al.  Lambda-calcul et reseaux , 1992 .

[11]  Andrea Masini,et al.  Proof Nets, Garbage, and Computations , 1997, TLCA.

[12]  Vincent Danos,et al.  The structure of multiplicatives , 1989, Arch. Math. Log..

[13]  M. Nivat Fiftieth volume of theoretical computer science , 1988 .

[14]  Martín Abadi,et al.  Linear logic without boxes , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[15]  Richard Banach Sequent Reconstruction in LLM - A Sweepline Proof , 1995, Ann. Pure Appl. Log..

[16]  Jean-Yves Girard,et al.  Linear logic: its syntax and semantics , 1995 .