On a tobit–Birnbaum–Saunders model with an application to medical data

ABSTRACT The tobit model allows a censored response variable to be described by covariates. Its applications cover different areas such as economics, engineering, environment and medicine. A strong assumption of the standard tobit model is that its errors follow a normal distribution. However, not all applications are well modeled by this distribution. Some efforts have relaxed the normality assumption by considering more flexible distributions. Nevertheless, the presence of asymmetry could not be well described by these flexible distributions. A real-world data application of measles vaccine in Haiti is explored, which confirms this asymmetry. We propose a tobit model with errors following a Birnbaum–Saunders (BS) distribution, which is asymmetrical and has shown to be a good alternative for describing medical data. Inference based on the maximum likelihood method and a type of residual are derived for the tobit–BS model. We perform global and local influence diagnostics to assess the sensitivity of the maximum likelihood estimators to atypical cases. A Monte Carlo simulation study is carried out to empirically evaluate the performance of these estimators. We conduct a data analysis for the mentioned application of measles vaccine based on the proposed model with the help of the R software. The results show the good performance of the tobit–BS model.

[1]  Víctor Leiva,et al.  Reparameterized Birnbaum-Saunders regression models with varying precision , 2016 .

[2]  Víctor Leiva,et al.  A new class of survival regression models with heavy-tailed errors: robustness and diagnostics , 2008, Lifetime data analysis.

[3]  Manuel González,et al.  Influence diagnostics in the tobit censored response model , 2010, Stat. Methods Appl..

[4]  Peter Wanke,et al.  Exploring the Potential Use of the Birnbaum-Saunders Distribution in Inventory Management , 2015 .

[5]  Dennis R. Helsel,et al.  Statistics for Censored Environmental DataUsing Minitab® and R: Helsel/Statistics for Environmental Data 2E , 2011 .

[6]  Dennis R. Helsel,et al.  Statistics for Censored Environmental Data Using Minitab and R , 2012 .

[7]  J. A. Calvin Regression Models for Categorical and Limited Dependent Variables , 1998 .

[8]  Achim Zeileis,et al.  Applied Econometrics with R , 2008 .

[9]  Juan F. Vivanco,et al.  Diagnostics in multivariate generalized Birnbaum-Saunders regression models , 2016 .

[10]  Víctor Leiva,et al.  Goodness-of-Fit Tests for the Birnbaum-Saunders Distribution With Censored Reliability Data , 2014, IEEE Transactions on Reliability.

[11]  Víctor Leiva,et al.  Birnbaum–Saunders statistical modelling: a new approach , 2014 .

[12]  Z. Birnbaum,et al.  A new family of life distributions , 1969 .

[13]  Heping Zhang,et al.  A diagnostic procedure based on local influence , 2004 .

[14]  Narayanaswamy Balakrishnan,et al.  Shape and change point analyses of the Birnbaum-Saunders-t hazard rate and associated estimation , 2012, Comput. Stat. Data Anal..

[15]  Samuel Kotz,et al.  Two New Mixture Models Related to the Inverse Gaussian Distribution , 2010 .

[16]  R. Dennis Cook,et al.  Detection of Influential Observation in Linear Regression , 2000, Technometrics.

[17]  Muhammad Aslam,et al.  Capability indices for Birnbaum–Saunders processes applied to electronic and food industries , 2014 .

[18]  Shuangzhe Liu,et al.  Influence diagnostic analysis in the possibly heteroskedastic linear model with exact restrictions , 2015, Statistical Methods & Applications.

[19]  Víctor Leiva,et al.  A methodology for stochastic inventory models based on a zero-adjusted Birnbaum-Saunders distribution , 2016 .

[20]  Víctor Leiva,et al.  The Birnbaum-Saunders Distribution , 2015 .

[21]  Víctor Leiva,et al.  On an extreme value version of the Birnbaum-Saunders distribution , 2012 .

[22]  Gilberto A. Paula,et al.  An extension of log-symmetric regression models: R codes and applications , 2016 .

[23]  Helton Saulo,et al.  A family of autoregressive conditional duration models applied to financial data , 2014, Comput. Stat. Data Anal..

[24]  Víctor Leiva,et al.  Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics , 2015 .

[25]  Cristian Villegas,et al.  Birnbaum-Saunders Mixed Models for Censored Reliability Data Analysis , 2011, IEEE Transactions on Reliability.

[26]  Fabrizio Ruggeri,et al.  A criterion for environmental assessment using Birnbaum–Saunders attribute control charts , 2015 .

[27]  B. Dhillon Life Distributions , 1981, IEEE Transactions on Reliability.

[28]  Francisco José de A. Cysneiros,et al.  A Multivariate Log-Linear Model for Birnbaum-Saunders Distributions , 2016, IEEE Transactions on Reliability.

[29]  Feng-Chang Xie,et al.  Diagnostic analysis for heterogeneous log-Birnbaum–Saunders regression models , 2012 .

[30]  Helton Saulo,et al.  Birnbaum–Saunders frailty regression models: Diagnostics and application to medical data , 2017, Biometrical journal. Biometrische Zeitschrift.

[31]  Gilberto A. Paula,et al.  Log-symmetric distributions: Statistical properties and parameter estimation , 2016 .

[32]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[33]  Aldo M. Garay,et al.  Bayesian analysis of censored linear regression models with scale mixtures of normal distributions , 2015 .

[34]  L H Moulton,et al.  A mixture model with detection limits for regression analyses of antibody response to vaccine. , 1995, Biometrics.

[35]  Victor H. Lachos,et al.  Influence diagnostics for Student-t censored linear regression models , 2015 .

[36]  Flávio Augusto Ziegelmann,et al.  A nonparametric method for estimating asymmetric densities based on skewed Birnbaum–Saunders distributions applied to environmental data , 2013, Stochastic Environmental Research and Risk Assessment.

[37]  Helton Saulo,et al.  A methodology based on the Birnbaum-Saunders distribution for reliability analysis applied to nano-materials , 2017, Reliab. Eng. Syst. Saf..

[38]  James R. Rieck,et al.  A log-linear model for the Birnbaum-Saunders distribution , 1991 .

[39]  Peter W. M. John,et al.  An Application of a Balanced Incomplete Block Design , 1961 .

[40]  M. Ivette Gomes,et al.  Extreme value Birnbaum–Saunders regression models applied to environmental data , 2016, Stochastic Environmental Research and Risk Assessment.

[41]  Heleno Bolfarine,et al.  Asymmetric regression models with limited responses with an application to antibody response to vaccine , 2013, Biometrical journal. Biometrische Zeitschrift.

[42]  M. C. Jones On reciprocal symmetry , 2008 .

[43]  Gustavo H. M. A. Rocha,et al.  Maximum likelihood methods in a robust censored errors-in-variables model , 2015 .

[44]  Helton Saulo,et al.  A survival model with Birnbaum–Saunders frailty for uncensored and censored cancer data , 2018, Brazilian Journal of Probability and Statistics.

[45]  Reinaldo Boris Arellano-Valle,et al.  Student-t censored regression model: properties and inference , 2012, Stat. Methods Appl..

[46]  Giuseppe Ragusa,et al.  Econometric Theory , 2013 .

[47]  J. S. Long,et al.  Regression Models for Categorical and Limited Dependent Variables , 1997 .

[48]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[49]  Manuel Galea,et al.  Generalized Tobit models: diagnostics and application in econometrics , 2018 .

[50]  E. Crow,et al.  Lognormal Distributions: Theory and Applications , 1987 .

[51]  T. Amemiya Tobit models: A survey , 1984 .

[52]  Tilmann Gneiting,et al.  Probabilistic forecasts of wind speed: ensemble model output statistics by using heteroscedastic censored regression , 2010 .

[53]  Manuel Galea,et al.  Diagnostics in Birnbaum-Saunders accelerated life models with an application to fatigue data , 2014 .

[54]  M. Kendall Theoretical Statistics , 1956, Nature.

[55]  Heleno Bolfarine,et al.  The Alpha-power Tobit Model , 2013 .

[56]  B. Efron,et al.  Assessing the accuracy of the maximum likelihood estimator: Observed versus expected Fisher information , 1978 .

[57]  Fernando Marmolejo-Ramos,et al.  Modeling neural activity with cumulative damage distributions , 2015, Biological Cybernetics.

[58]  A. Desmond Stochastic models of failure in random environments , 1985 .

[59]  Richard T. Carson,et al.  The Tobit Model With a Non-Zero Threshold , 2005 .

[60]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[61]  Gilberto A. Paula,et al.  Robust statistical modeling using the Birnbaum-Saunders- t distribution applied to insurance , 2012 .

[62]  Debasis Kundu,et al.  On the hazard function of Birnbaum-Saunders distribution and associated inference , 2008, Comput. Stat. Data Anal..

[63]  Feng-Chang Xie,et al.  Diagnostics analysis for log‐Birnbaum–Saunders regression models with censored data , 2011 .