Pseudospectrum and Black Hole Quasinormal Mode Instability
暂无分享,去创建一个
Rodrigo Panosso Macedo | Jos'e Luis Jaramillo | Lamis Al Sheikh | J. Jaramillo | R. Macedo | L. A. Sheikh
[1] A. Medved. On the Kerr quantum area spectrum , 2008, 0804.4346.
[2] F. Nicoleau,et al. Local Inverse Scattering at a Fixed Energy for Radial Schrödinger Operators and Localization of the Regge Poles , 2015, 1502.02276.
[3] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[4] S. Vongehr,et al. Solitons , 2020, Encyclopedia of Continuum Mechanics.
[5] J. York. Dynamical origin of black-hole radiance , 1983 .
[6] P. Hintz,et al. Quasinormal Modes and Strong Cosmic Censorship. , 2017, Physical review letters.
[7] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[8] S. Carneiro,et al. Quasinormal modes and horizon area quantisation in Loop Quantum Gravity , 2020, General Relativity and Gravitation.
[9] Helmut Friedrich. Conformal Einstein evolution , 2002 .
[11] V. Ferrari,et al. New approach to the quasinormal modes of a black hole , 1984 .
[12] T. Regge,et al. Analytic properties of the scattering matrix , 1958 .
[13] Roger Penrose,et al. Asymptotic properties of fields and space-times , 1963 .
[14] S. Teukolsky,et al. Testing the No-Hair Theorem with GW150914. , 2019, Physical review letters.
[15] T. A. Zang,et al. Spectral Methods: Fundamentals in Single Domains , 2010 .
[16] E. Davies,et al. Linear Operators and their Spectra , 2007 .
[17] E. Berti,et al. Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes , 2019, Physical Review D.
[18] E. Berti,et al. Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating black holes , 2019, Physical Review D.
[19] Sharp upper bounds on the number of the scattering poles , 2004, math/0412536.
[20] Bernard Helffer,et al. Résonances en limite semi-classique , 1986 .
[21] Spectral statistics of non-selfadjoint operators subject to small random perturbations , 2016 .
[22] R. Konoplya,et al. Wormholes versus black holes: quasinormal ringing at early and late times , 2016, 1606.00517.
[23] Leo C. Stein,et al. qnm: A Python package for calculating Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients , 2019, J. Open Source Softw..
[24] Kostas D. Kokkotas,et al. Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.
[25] Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds , 2009, 0903.2937.
[26] C. Warnick. On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes , 2013, 1306.5760.
[27] On the Completeness of the Quasinormal Modes of the Pöschl–Teller Potential , 1998, gr-qc/9803034.
[28] Young,et al. Completeness and orthogonality of quasinormal modes in leaky optical cavities. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[29] H. Nollert. Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .
[30] S. Dolan,et al. Scattering from compact objects: Regge poles and the complex angular momentum method , 2019, Physical Review D.
[31] A. Ottewill,et al. On an expansion method for black hole quasinormal modes and Regge poles , 2009, 0908.0329.
[32] K. Roberts,et al. Thesis , 2002 .
[33] William Bordeaux Montrieux. Estimation de r\'esolvante et construction de quasimode pr\`es du bord du pseudospectre , 2013, 1301.3102.
[34] C. Will,et al. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.
[35] John Archibald Wheeler,et al. Stability of a Schwarzschild singularity , 1957 .
[36] V. Hubeny,et al. Quasinormal modes of AdS black holes and the approach to thermal equilibrium , 1999, hep-th/9909056.
[37] P. Schmid. Nonmodal Stability Theory , 2007 .
[38] Maciej Zworski,et al. Distribution of poles for scattering on the real line , 1987 .
[39] Tosio Kato. Perturbation theory for linear operators , 1966 .
[40] M. Maliborski,et al. Dynamics at the threshold for blowup for supercritical wave equations outside a ball , 2019, Nonlinearity.
[41] Jean-Michel Raimond,et al. Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.
[42] M. Zworski. RESONANCES IN PHYSICS AND GEOMETRY , 1999 .
[43] Lloyd N. Trefethen,et al. Pseudospectra of Linear Operators , 1997, SIAM Rev..
[44] V. Cardoso,et al. Can environmental effects spoil precision gravitational-wave astrophysics? , 2014, 1404.7149.
[45] J. L. Jaramillo,et al. Spanish Relativity Meeting (ERE 2010): Gravity as a Crossroad in Physics , 2011 .
[46] R. Konoplya,et al. Quasinormal modes of black holes: From astrophysics to string theory , 2011, 1102.4014.
[47] M. Maggiore. Gravitational Waves: Volume 2: Astrophysics and Cosmology , 2018 .
[48] E. Davies,et al. Pseudospectra of differential operators , 2000 .
[49] Quasinormal mode expansion for linearized waves in gravitational systems. , 1994, Physical review letters.
[50] Subrahmanyan Chandrasekhar,et al. The Mathematical Theory of Black Holes , 1983 .
[51] E. Vagenas. Area spectrum of rotating black holes via the new interpretation of quasinormal modes , 2008, 0804.3264.
[52] 採編典藏組. Society for Industrial and Applied Mathematics(SIAM) , 2008 .
[53] H. Friedrich. On the existence ofn-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure , 1986 .
[54] J. Wu,et al. High-frequency behavior of w-mode pulsations of compact stars , 2011, 1101.0319.
[55] E. Davies,et al. Non‐Self‐Adjoint Differential Operators , 2002 .
[56] Vitor Cardoso,et al. Quasinormal modes of black holes and black branes , 2009, 0905.2975.
[57] S. Dyatlov,et al. Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.
[58] Anne E. Trefethen,et al. Hydrodynamic Stability Without Eigenvalues , 1993, Science.
[59] M. Visser,et al. Quasi-normal frequencies: key analytic results , 2010, 1005.4483.
[60] M. Zworski,et al. Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .
[61] R. Wald,et al. General Relativity , 2020, The Cosmic Microwave Background.
[62] Price,et al. Intertwining of the equations of black-hole perturbations. , 1991, Physical review. D, Particles and fields.
[63] E. Berti,et al. Black hole spectroscopy: Systematic errors and ringdown energy estimates , 2017, 1710.02156.
[64] B. Krishnan,et al. Black hole spectroscopy: Testing general relativity through gravitational wave observations , 2003, gr-qc/0309007.
[65] Yves D'ecanini,et al. Unstable circular null geodesics of static spherically symmetric black holes, Regge poles, and quasinormal frequencies , 2010, 1002.0121.
[66] Michael V Berry,et al. Semiclassical approximations in wave mechanics , 1972 .
[67] P Lalanne,et al. Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.
[68] E. W. Leaver,et al. An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[69] Anil Zenginoglu,et al. A geometric framework for black hole perturbations , 2011 .
[70] O. Dreyer. Quasinormal modes, the area spectrum, and black hole entropy. , 2002, Physical review letters.
[71] G. Kunstatter,et al. Highly damped quasinormal modes and the small scale structure of quantum corrected black hole exteriors , 2011, 1106.4357.
[72] M. Zworski,et al. Outgoing Solutions Via Gevrey-2 Properties , 2020, Annals of PDE.
[73] Semyon Dyatlov,et al. Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole , 2010, 1003.6128.
[74] Robert W. Batterman,et al. The devil in the details : asymptotic reasoning in explanation, reduction, and emergence , 2001 .
[75] Mehrdad Mirbabayi. Quasinormal Modes , 2018 .
[76] J. Sjöstrand. Pseudospectrum for differential operators , 2003 .
[77] THE ASYMPTOTIC STRUCTURE OF SPACE-TIME , 2003, astro-ph/0308236.
[79] M. Ansorg,et al. Spectral decomposition of black-hole perturbations on hyperboloidal slices , 2016, 1604.02261.
[80] B. Krishnan,et al. Horizons in a binary black hole merger II: Fluxes, multipole moments and stability , 2020, 2006.03940.
[81] J. V. Kroon,et al. Conformal Methods in General Relativity , 2016 .
[82] M. Dimassi,et al. Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .
[83] R. Price,et al. Black hole ringing, quasinormal modes, and light rings , 2016, 1609.00083.
[84] M. Zworski,et al. Asymptotic distribution of resonances for convex obstacles , 1999 .
[85] Yves D'ecanini,et al. Fine structure of high-energy absorption cross sections for black holes , 2011, 1104.3285.
[86] P. Hintz,et al. Linear stability of slowly rotating Kerr black holes , 2019, Inventiones mathematicae.
[87] D. Gajic,et al. A model problem for quasinormal ringdown of asymptotically flat or extremal black holes , 2019, Journal of Mathematical Physics.
[88] Mildred Hager. Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle , 2006 .
[89] Semi-classical analysis and pseudo-spectra , 2004, math/0402172.
[90] Kai Lin,et al. A matrix method for quasinormal modes: Schwarzschild black holes in asymptotically flat and (anti-) de Sitter spacetimes , 2016, 1610.08135.
[91] Loi de Weyl presque sûre et résolvante pour des opérateurs non-autoadjoints , 2008 .
[92] J. Jaramillo,et al. Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case , 2018, Physical Review D.
[93] Aron Jansen. Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes , 2017, The European Physical Journal Plus.
[94] L. Trefethen,et al. Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .
[95] J. Jaramillo,et al. Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability. , 2021, Physical review letters.
[96] G. B. Cook,et al. Purely imaginary quasinormal modes of the Kerr geometry , 2016, 1603.09710.
[97] B. Raffaelli. Strong gravitational lensing and black hole quasinormal modes: towards a semiclassical unified description , 2014, 1412.7333.
[98] T. Ramond,et al. An example of resonance instability , 2020, 2005.10035.
[99] F. Zerilli. Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .
[100] Martin Vogel,et al. Local eigenvalue statistics of one-dimensional random nonselfadjoint pseudodifferential operators , 2017, Journal of the European Mathematical Society.
[101] M. Dunajski. Solitons, Instantons, and Twistors , 2010 .
[102] W. Press,et al. Gravitational waves. , 1980, Science.
[103] P. Hintz,et al. Analysis of linear waves near the Cauchy horizon of cosmological black holes , 2015, 1512.08004.
[104] Mouez Dimassi,et al. Spectral asymptotics in the semi-classical limit , 1999 .
[105] Mildred Hager. Instabilité Spectrale Semiclassique d’Opérateurs Non-Autoadjoints II , 2006 .
[106] I. Vega,et al. Bernstein spectral method for quasinormal modes and other eigenvalue problems , 2020, The European Physical Journal C.
[107] Bohr's correspondence principle and the area spectrum of quantum black holes , 1998, gr-qc/9812002.
[108] P. T. Leung,et al. Quasinormal-mode expansion for waves in open systems , 1998 .
[109] M. Zworski. Mathematical study of scattering resonances , 2016, 1609.03550.
[110] R. Konoplya. Conformal Weyl gravity via two stages of quasinormal ringing and late-time behavior , 2020, Physical Review D.
[111] Robert W. Batterman,et al. The devil in the details : asymptotic reasoning in explanation, reduction, and emergence , 2002 .
[112] P. Mach,et al. Global dynamics of a Yang-Mills field on an asymptotically hyperbolic space , 2014, 1410.4317.
[113] Bin Wang,et al. Asymptotical quasinormal mode spectrum for piecewise approximate effective potential , 2020, Physical Review D.
[114] E. Davies,et al. Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[115] Matthew J. Colbrook,et al. How to Compute Spectra with Error Control. , 2019, Physical review letters.
[116] R. Macedo. Comment on “Some exact quasinormal frequencies of a massless scalar field in Schwarzschild spacetime” , 2018, Physical Review D.
[117] Young,et al. Time-independent perturbation theory for quasinormal modes in leaky optical cavities. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.
[118] G. Kunstatter. d-dimensional black hole entropy spectrum from quasinormal modes. , 2002, Physical review letters.
[119] Philippe Lalanne,et al. Light Interaction with Photonic and Plasmonic Resonances , 2017, Laser & Photonics Reviews.
[120] S. Teukolsky,et al. Black Hole Ringdown: The Importance of Overtones , 2019, Physical Review X.
[121] Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators , 2006, math/0601381.
[122] A. Ashtekar. Asymptotic Properties of Isolated Systems: Recent Developments , 1984 .
[123] Vitor Cardoso,et al. Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? , 2016, Physical review letters.
[124] S. Chandrasekhar,et al. The quasi-normal modes of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[125] J. Sjöstrand. Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations , 2019, Pseudo-Differential Operators.
[126] D. Krejčiřík,et al. Pseudospectra in non-Hermitian quantum mechanics , 2014, 1402.1082.
[127] D. Kennefick,et al. Darboux transformation in black hole perturbation theory , 2017, 1702.06459.
[128] D. Sudarsky,et al. Dark Energy from Quantum Gravity Discreteness. , 2017, Physical review letters.
[129] D. Gajic,et al. Quasinormal Modes in Extremal Reissner–Nordström Spacetimes , 2019, Communications in Mathematical Physics.
[130] M. Maggiore. Physical interpretation of the spectrum of black hole quasinormal modes. , 2007, Physical review letters.
[131] H. Nollert,et al. Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts. , 1993, Physical review. D, Particles and fields.
[132] Semen Vladimirovich Dyatlov. Resonances in General Relativity , 2013 .
[133] J. Sjoestrand. Weyl law for semi-classical resonances with randomly perturbed potentials , 2011, 1111.3549.
[134] M. Berry,et al. Semiclassically weak reflections above analytic and non-analytic potential barriers , 1982 .
[135] A. Ashtekar. Asymptotic Structure of the Gravitational Field at Spatial Infinity. , 1978 .