Pseudospectrum and Black Hole Quasinormal Mode Instability

We revisit and numerically demonstrate the stability of the black hole slowest decaying quasi-normal mode (QNM), also providing evidence of the instability of black hole highly damped QNMs under small scale perturbations, as identified by Nollert. A reconciliation between the unstable aspects of the QNM spectrum and the robustness of ringing down frequencies is given in terms of the underlying analytical structure of the problem. Methodologically, a compactified hyperboloidal approach to QNMs is adopted. This casts QNMs in terms of the spectral problem of a non-selfadjoint operator where specific tools, namely the pseudospectrum, can be applied. After illustrating the approach with the P\"oschl-Teller potential, we study the physically relevant Schwarzschild case and consider some of the astrophysical and fundamental physics implications of QNM (in)stabilities.

[1]  A. Medved On the Kerr quantum area spectrum , 2008, 0804.4346.

[2]  F. Nicoleau,et al.  Local Inverse Scattering at a Fixed Energy for Radial Schrödinger Operators and Localization of the Regge Poles , 2015, 1502.02276.

[3]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[4]  S. Vongehr,et al.  Solitons , 2020, Encyclopedia of Continuum Mechanics.

[5]  J. York Dynamical origin of black-hole radiance , 1983 .

[6]  P. Hintz,et al.  Quasinormal Modes and Strong Cosmic Censorship. , 2017, Physical review letters.

[7]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[8]  S. Carneiro,et al.  Quasinormal modes and horizon area quantisation in Loop Quantum Gravity , 2020, General Relativity and Gravitation.

[9]  Helmut Friedrich Conformal Einstein evolution , 2002 .

[11]  V. Ferrari,et al.  New approach to the quasinormal modes of a black hole , 1984 .

[12]  T. Regge,et al.  Analytic properties of the scattering matrix , 1958 .

[13]  Roger Penrose,et al.  Asymptotic properties of fields and space-times , 1963 .

[14]  S. Teukolsky,et al.  Testing the No-Hair Theorem with GW150914. , 2019, Physical review letters.

[15]  T. A. Zang,et al.  Spectral Methods: Fundamentals in Single Domains , 2010 .

[16]  E. Davies,et al.  Linear Operators and their Spectra , 2007 .

[17]  E. Berti,et al.  Parametrized black hole quasinormal ringdown. II. Coupled equations and quadratic corrections for nonrotating black holes , 2019, Physical Review D.

[18]  E. Berti,et al.  Parametrized black hole quasinormal ringdown: Decoupled equations for nonrotating black holes , 2019, Physical Review D.

[19]  Sharp upper bounds on the number of the scattering poles , 2004, math/0412536.

[20]  Bernard Helffer,et al.  Résonances en limite semi-classique , 1986 .

[21]  Spectral statistics of non-selfadjoint operators subject to small random perturbations , 2016 .

[22]  R. Konoplya,et al.  Wormholes versus black holes: quasinormal ringing at early and late times , 2016, 1606.00517.

[23]  Leo C. Stein,et al.  qnm: A Python package for calculating Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients , 2019, J. Open Source Softw..

[24]  Kostas D. Kokkotas,et al.  Quasi-Normal Modes of Stars and Black Holes , 1999, Living reviews in relativity.

[25]  Almost sure Weyl asymptotics for non-self-adjoint elliptic operators on compact manifolds , 2009, 0903.2937.

[26]  C. Warnick On Quasinormal Modes of Asymptotically Anti-de Sitter Black Holes , 2013, 1306.5760.

[27]  On the Completeness of the Quasinormal Modes of the Pöschl–Teller Potential , 1998, gr-qc/9803034.

[28]  Young,et al.  Completeness and orthogonality of quasinormal modes in leaky optical cavities. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[29]  H. Nollert Quasinormal modes: the characteristic `sound' of black holes and neutron stars , 1999 .

[30]  S. Dolan,et al.  Scattering from compact objects: Regge poles and the complex angular momentum method , 2019, Physical Review D.

[31]  A. Ottewill,et al.  On an expansion method for black hole quasinormal modes and Regge poles , 2009, 0908.0329.

[32]  K. Roberts,et al.  Thesis , 2002 .

[33]  William Bordeaux Montrieux Estimation de r\'esolvante et construction de quasimode pr\`es du bord du pseudospectre , 2013, 1301.3102.

[34]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[35]  John Archibald Wheeler,et al.  Stability of a Schwarzschild singularity , 1957 .

[36]  V. Hubeny,et al.  Quasinormal modes of AdS black holes and the approach to thermal equilibrium , 1999, hep-th/9909056.

[37]  P. Schmid Nonmodal Stability Theory , 2007 .

[38]  Maciej Zworski,et al.  Distribution of poles for scattering on the real line , 1987 .

[39]  Tosio Kato Perturbation theory for linear operators , 1966 .

[40]  M. Maliborski,et al.  Dynamics at the threshold for blowup for supercritical wave equations outside a ball , 2019, Nonlinearity.

[41]  Jean-Michel Raimond,et al.  Cavity Quantum Electrodynamics , 1993, Quantum Dynamics of Simple Systems.

[42]  M. Zworski RESONANCES IN PHYSICS AND GEOMETRY , 1999 .

[43]  Lloyd N. Trefethen,et al.  Pseudospectra of Linear Operators , 1997, SIAM Rev..

[44]  V. Cardoso,et al.  Can environmental effects spoil precision gravitational-wave astrophysics? , 2014, 1404.7149.

[45]  J. L. Jaramillo,et al.  Spanish Relativity Meeting (ERE 2010): Gravity as a Crossroad in Physics , 2011 .

[46]  R. Konoplya,et al.  Quasinormal modes of black holes: From astrophysics to string theory , 2011, 1102.4014.

[47]  M. Maggiore Gravitational Waves: Volume 2: Astrophysics and Cosmology , 2018 .

[48]  E. Davies,et al.  Pseudospectra of differential operators , 2000 .

[49]  Quasinormal mode expansion for linearized waves in gravitational systems. , 1994, Physical review letters.

[50]  Subrahmanyan Chandrasekhar,et al.  The Mathematical Theory of Black Holes , 1983 .

[51]  E. Vagenas Area spectrum of rotating black holes via the new interpretation of quasinormal modes , 2008, 0804.3264.

[52]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[53]  H. Friedrich On the existence ofn-geodesically complete or future complete solutions of Einstein's field equations with smooth asymptotic structure , 1986 .

[54]  J. Wu,et al.  High-frequency behavior of w-mode pulsations of compact stars , 2011, 1101.0319.

[55]  E. Davies,et al.  Non‐Self‐Adjoint Differential Operators , 2002 .

[56]  Vitor Cardoso,et al.  Quasinormal modes of black holes and black branes , 2009, 0905.2975.

[57]  S. Dyatlov,et al.  Mathematical Theory of Scattering Resonances , 2019, Graduate Studies in Mathematics.

[58]  Anne E. Trefethen,et al.  Hydrodynamic Stability Without Eigenvalues , 1993, Science.

[59]  M. Visser,et al.  Quasi-normal frequencies: key analytic results , 2010, 1005.4483.

[60]  M. Zworski,et al.  Pseudospectra of semiclassical (pseudo‐) differential operators , 2004 .

[61]  R. Wald,et al.  General Relativity , 2020, The Cosmic Microwave Background.

[62]  Price,et al.  Intertwining of the equations of black-hole perturbations. , 1991, Physical review. D, Particles and fields.

[63]  E. Berti,et al.  Black hole spectroscopy: Systematic errors and ringdown energy estimates , 2017, 1710.02156.

[64]  B. Krishnan,et al.  Black hole spectroscopy: Testing general relativity through gravitational wave observations , 2003, gr-qc/0309007.

[65]  Yves D'ecanini,et al.  Unstable circular null geodesics of static spherically symmetric black holes, Regge poles, and quasinormal frequencies , 2010, 1002.0121.

[66]  Michael V Berry,et al.  Semiclassical approximations in wave mechanics , 1972 .

[67]  P Lalanne,et al.  Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators. , 2013, Physical review letters.

[68]  E. W. Leaver,et al.  An analytic representation for the quasi-normal modes of Kerr black holes , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  Anil Zenginoglu,et al.  A geometric framework for black hole perturbations , 2011 .

[70]  O. Dreyer Quasinormal modes, the area spectrum, and black hole entropy. , 2002, Physical review letters.

[71]  G. Kunstatter,et al.  Highly damped quasinormal modes and the small scale structure of quantum corrected black hole exteriors , 2011, 1106.4357.

[72]  M. Zworski,et al.  Outgoing Solutions Via Gevrey-2 Properties , 2020, Annals of PDE.

[73]  Semyon Dyatlov,et al.  Quasi-Normal Modes and Exponential Energy Decay for the Kerr-de Sitter Black Hole , 2010, 1003.6128.

[74]  Robert W. Batterman,et al.  The devil in the details : asymptotic reasoning in explanation, reduction, and emergence , 2001 .

[75]  Mehrdad Mirbabayi Quasinormal Modes , 2018 .

[76]  J. Sjöstrand Pseudospectrum for differential operators , 2003 .

[77]  THE ASYMPTOTIC STRUCTURE OF SPACE-TIME , 2003, astro-ph/0308236.

[79]  M. Ansorg,et al.  Spectral decomposition of black-hole perturbations on hyperboloidal slices , 2016, 1604.02261.

[80]  B. Krishnan,et al.  Horizons in a binary black hole merger II: Fluxes, multipole moments and stability , 2020, 2006.03940.

[81]  J. V. Kroon,et al.  Conformal Methods in General Relativity , 2016 .

[82]  M. Dimassi,et al.  Spectral Asymptotics in the Semi-Classical Limit: Frontmatter , 1999 .

[83]  R. Price,et al.  Black hole ringing, quasinormal modes, and light rings , 2016, 1609.00083.

[84]  M. Zworski,et al.  Asymptotic distribution of resonances for convex obstacles , 1999 .

[85]  Yves D'ecanini,et al.  Fine structure of high-energy absorption cross sections for black holes , 2011, 1104.3285.

[86]  P. Hintz,et al.  Linear stability of slowly rotating Kerr black holes , 2019, Inventiones mathematicae.

[87]  D. Gajic,et al.  A model problem for quasinormal ringdown of asymptotically flat or extremal black holes , 2019, Journal of Mathematical Physics.

[88]  Mildred Hager Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints I: un modèle , 2006 .

[89]  Semi-classical analysis and pseudo-spectra , 2004, math/0402172.

[90]  Kai Lin,et al.  A matrix method for quasinormal modes: Schwarzschild black holes in asymptotically flat and (anti-) de Sitter spacetimes , 2016, 1610.08135.

[91]  Loi de Weyl presque sûre et résolvante pour des opérateurs non-autoadjoints , 2008 .

[92]  J. Jaramillo,et al.  Hyperboloidal slicing approach to quasinormal mode expansions: The Reissner-Nordström case , 2018, Physical Review D.

[93]  Aron Jansen Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes , 2017, The European Physical Journal Plus.

[94]  L. Trefethen,et al.  Spectra and pseudospectra : the behavior of nonnormal matrices and operators , 2005 .

[95]  J. Jaramillo,et al.  Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability. , 2021, Physical review letters.

[96]  G. B. Cook,et al.  Purely imaginary quasinormal modes of the Kerr geometry , 2016, 1603.09710.

[97]  B. Raffaelli Strong gravitational lensing and black hole quasinormal modes: towards a semiclassical unified description , 2014, 1412.7333.

[98]  T. Ramond,et al.  An example of resonance instability , 2020, 2005.10035.

[99]  F. Zerilli Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics , 1969 .

[100]  Martin Vogel,et al.  Local eigenvalue statistics of one-dimensional random nonselfadjoint pseudodifferential operators , 2017, Journal of the European Mathematical Society.

[101]  M. Dunajski Solitons, Instantons, and Twistors , 2010 .

[102]  W. Press,et al.  Gravitational waves. , 1980, Science.

[103]  P. Hintz,et al.  Analysis of linear waves near the Cauchy horizon of cosmological black holes , 2015, 1512.08004.

[104]  Mouez Dimassi,et al.  Spectral asymptotics in the semi-classical limit , 1999 .

[105]  Mildred Hager Instabilité Spectrale Semiclassique d’Opérateurs Non-Autoadjoints II , 2006 .

[106]  I. Vega,et al.  Bernstein spectral method for quasinormal modes and other eigenvalue problems , 2020, The European Physical Journal C.

[107]  Bohr's correspondence principle and the area spectrum of quantum black holes , 1998, gr-qc/9812002.

[108]  P. T. Leung,et al.  Quasinormal-mode expansion for waves in open systems , 1998 .

[109]  M. Zworski Mathematical study of scattering resonances , 2016, 1609.03550.

[110]  R. Konoplya Conformal Weyl gravity via two stages of quasinormal ringing and late-time behavior , 2020, Physical Review D.

[111]  Robert W. Batterman,et al.  The devil in the details : asymptotic reasoning in explanation, reduction, and emergence , 2002 .

[112]  P. Mach,et al.  Global dynamics of a Yang-Mills field on an asymptotically hyperbolic space , 2014, 1410.4317.

[113]  Bin Wang,et al.  Asymptotical quasinormal mode spectrum for piecewise approximate effective potential , 2020, Physical Review D.

[114]  E. Davies,et al.  Pseudo–spectra, the harmonic oscillator and complex resonances , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[115]  Matthew J. Colbrook,et al.  How to Compute Spectra with Error Control. , 2019, Physical review letters.

[116]  R. Macedo Comment on “Some exact quasinormal frequencies of a massless scalar field in Schwarzschild spacetime” , 2018, Physical Review D.

[117]  Young,et al.  Time-independent perturbation theory for quasinormal modes in leaky optical cavities. , 1994, Physical Review A. Atomic, Molecular, and Optical Physics.

[118]  G. Kunstatter d-dimensional black hole entropy spectrum from quasinormal modes. , 2002, Physical review letters.

[119]  Philippe Lalanne,et al.  Light Interaction with Photonic and Plasmonic Resonances , 2017, Laser & Photonics Reviews.

[120]  S. Teukolsky,et al.  Black Hole Ringdown: The Importance of Overtones , 2019, Physical Review X.

[121]  Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators , 2006, math/0601381.

[122]  A. Ashtekar Asymptotic Properties of Isolated Systems: Recent Developments , 1984 .

[123]  Vitor Cardoso,et al.  Is the Gravitational-Wave Ringdown a Probe of the Event Horizon? , 2016, Physical review letters.

[124]  S. Chandrasekhar,et al.  The quasi-normal modes of the Schwarzschild black hole , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[125]  J. Sjöstrand Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations , 2019, Pseudo-Differential Operators.

[126]  D. Krejčiřík,et al.  Pseudospectra in non-Hermitian quantum mechanics , 2014, 1402.1082.

[127]  D. Kennefick,et al.  Darboux transformation in black hole perturbation theory , 2017, 1702.06459.

[128]  D. Sudarsky,et al.  Dark Energy from Quantum Gravity Discreteness. , 2017, Physical review letters.

[129]  D. Gajic,et al.  Quasinormal Modes in Extremal Reissner–Nordström Spacetimes , 2019, Communications in Mathematical Physics.

[130]  M. Maggiore Physical interpretation of the spectrum of black hole quasinormal modes. , 2007, Physical review letters.

[131]  H. Nollert,et al.  Quasinormal modes of Schwarzschild black holes: The determination of quasinormal frequencies with very large imaginary parts. , 1993, Physical review. D, Particles and fields.

[132]  Semen Vladimirovich Dyatlov Resonances in General Relativity , 2013 .

[133]  J. Sjoestrand Weyl law for semi-classical resonances with randomly perturbed potentials , 2011, 1111.3549.

[134]  M. Berry,et al.  Semiclassically weak reflections above analytic and non-analytic potential barriers , 1982 .

[135]  A. Ashtekar Asymptotic Structure of the Gravitational Field at Spatial Infinity. , 1978 .