Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement

Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

[1]  Philip Resnik,et al.  Using Information Content to Evaluate Semantic Similarity in a Taxonomy , 1995, IJCAI.

[2]  Meng Wang,et al.  Neighborhood Discriminant Hashing for Large-Scale Image Retrieval , 2015, IEEE Transactions on Image Processing.

[3]  Jiebo Luo,et al.  Real-World Image Annotation and Retrieval: An Introduction to the Special Section , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Nikos D. Sidiropoulos,et al.  ParCube: Sparse Parallelizable CANDECOMP-PARAFAC Tensor Decomposition , 2015, ACM Trans. Knowl. Discov. Data.

[5]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[6]  Steven C. H. Hoi,et al.  A two-view learning approach for image tag ranking , 2011, WSDM '11.

[7]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[8]  Michael J. Quinn,et al.  Block data decomposition for data-parallel programming on a heterogeneous workstation network , 1993, [1993] Proceedings The 2nd International Symposium on High Performance Distributed Computing.

[9]  Mohammed J. Zaki,et al.  TRICLUSTER: an effective algorithm for mining coherent clusters in 3D microarray data , 2005, SIGMOD '05.

[10]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[11]  Latifur Khan,et al.  Image annotations by combining multiple evidence & wordNet , 2005, ACM Multimedia.

[12]  Dong Liu,et al.  Image retagging , 2010, ACM Multimedia.

[13]  Yu Zong,et al.  Web Co-clustering of Usage Network Using Tensor Decomposition , 2009, 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology.

[14]  Nenghai Yu,et al.  Flickr Distance: A Relationship Measure for Visual Concepts , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Nikos D. Sidiropoulos,et al.  ParCube: Sparse Parallelizable Tensor Decompositions , 2012, ECML/PKDD.

[16]  Changhu Wang,et al.  Image annotation refinement using random walk with restarts , 2006, MM '06.

[17]  Shuicheng Yan,et al.  Image tag refinement towards low-rank, content-tag prior and error sparsity , 2010, ACM Multimedia.

[18]  Changsheng Xu,et al.  User-Aware Image Tag Refinement via Ternary Semantic Analysis , 2012, IEEE Transactions on Multimedia.

[19]  Heng Ji,et al.  Exploring Context and Content Links in Social Media: A Latent Space Method , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Marcel Worring,et al.  Learning Social Tag Relevance by Neighbor Voting , 2009, IEEE Transactions on Multimedia.

[21]  Dekang Lin,et al.  Using Syntactic Dependency as Local Context to Resolve Word Sense Ambiguity , 1997, ACL.

[22]  Xue Li,et al.  Image tag completion by low-rank factorization with dual reconstruction structure preserved , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[23]  Paulo Fernandes,et al.  Kronecker descriptor partitioning for parallel algorithms , 2010, SpringSim.

[24]  Ning Zhou,et al.  A Hybrid Probabilistic Model for Unified Collaborative and Content-Based Image Tagging , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[26]  Bin Wang,et al.  Dual cross-media relevance model for image annotation , 2007, ACM Multimedia.

[27]  Dong Liu,et al.  Tag ranking , 2009, WWW '09.

[28]  Hai Jin,et al.  Image label completion by pursuing contextual decomposability , 2012, TOMCCAP.

[29]  Jiawei Han,et al.  Image clustering with tensor representation , 2005, ACM Multimedia.

[30]  Lei Wu,et al.  Tag Completion for Image Retrieval , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Hongliang Yu,et al.  Image Tagging via Cross-Modal Semantic Mapping , 2015, ACM Multimedia.

[32]  Jianmin Wang,et al.  Image Tag Completion via Image-Specific and Tag-Specific Linear Sparse Reconstructions , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Jing Liu,et al.  Clustering-Guided Sparse Structural Learning for Unsupervised Feature Selection , 2014, IEEE Transactions on Knowledge and Data Engineering.

[34]  Ramesh C. Jain,et al.  Image annotation by kNN-sparse graph-based label propagation over noisily tagged web images , 2011, TIST.

[35]  Jing Liu,et al.  Image annotation using multi-correlation probabilistic matrix factorization , 2010, ACM Multimedia.

[36]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[37]  Ivor W. Tsang,et al.  Tag-based web photo retrieval improved by batch mode re-tagging , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[38]  Hao Xu,et al.  Tag refinement by regularized LDA , 2009, ACM Multimedia.

[39]  Charu C. Aggarwal,et al.  Mining collective intelligence in diverse groups , 2013, WWW.

[40]  Changhu Wang,et al.  Content-Based Image Annotation Refinement , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Anne Benoit,et al.  Memory-efficient kronecker algorithms with applications to the modelling of parallel systems , 2003, Proceedings International Parallel and Distributed Processing Symposium.

[42]  Tat-Seng Chua,et al.  Social-Sensed Image Search , 2014, TOIS.

[43]  Jing Liu,et al.  Robust Structured Subspace Learning for Data Representation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Changsheng Xu,et al.  Exploiting user information for image tag refinement , 2011, MM '11.