AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS

This paper considers the multidimensional active scalar problem of motion of a function ρ(x, t) by a velocity field obtained by v = -∇N * ρ, where N is the Newtonian potential. We prove well-posedness of compactly supported L∞ ∩ L1 solutions of possibly mixed sign. These solutions include an important class of solutions that are proportional to characteristic functions on a time-evolving domain. We call these aggregation patches. Whereas positive solutions collapse on themselves in finite time, negative solutions spread and converge toward a self-similar spreading circular patch solution as t → ∞. We give a convergence rate that we prove is sharp in 2D. In the case of positive collapsing solutions, we investigate numerically the geometry of patch solutions in 2D and in 3D (axisymmetric). We show that the time evolving domain on which the patch is supported typically collapses on a complex skeleton of codimension one.

[1]  E. Mainini Well-posedness for a mean field model of Ginzburg–Landau vortices with opposite degrees , 2012 .

[2]  Andrea L. Bertozzi,et al.  Characterization of Radially Symmetric Finite Time Blowup in Multidimensional Aggregation Equations , 2012, SIAM J. Math. Anal..

[3]  M. Burger,et al.  A LEVEL SET BASED SHAPE OPTIMIZATION METHOD FOR AN ELLIPTIC OBSTACLE PROBLEM , 2011 .

[4]  Razvan C. Fetecau,et al.  Swarm dynamics and equilibria for a nonlocal aggregation model , 2011 .

[5]  Carron Shankland,et al.  From individuals to populations: A mean field semantics for process algebra , 2011, Theor. Comput. Sci..

[6]  L. Ambrosio,et al.  Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .

[7]  J. Carrillo,et al.  Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations , 2011 .

[8]  Hongjie Dong On Similarity Solutions to the Multidimensional Aggregation Equation , 2011, SIAM J. Math. Anal..

[9]  T. Laurent,et al.  Lp theory for the multidimensional aggregation equation , 2011 .

[10]  Andrea Bertozzi,et al.  Local and global well-posedness for aggregation equations and Patlak–Keller–Segel models with degenerate diffusion , 2010, 1009.2674.

[11]  J. Vázquez,et al.  Nonlinear Porous Medium Flow with Fractional Potential Pressure , 2010, 1001.0410.

[12]  F. Léger,et al.  AGGREGATION VIA THE NEWTONIAN POTENTIAL AND AGGREGATION PATCHES , 2011 .

[13]  Andrea L. Bertozzi,et al.  Existence and uniqueness of solutions to an aggregation equation with degenerate diffusion , 2010 .

[14]  Andrea L. Bertozzi,et al.  Self-Similar Blowup Solutions to an Aggregation Equation in Rn , 2010, SIAM J. Appl. Math..

[15]  Hongjie Dong The aggregation equation with power-law kernels: ill-posedness, mass concentration and similarity solutions , 2010 .

[16]  Andrea L. Bertozzi,et al.  Finite-time blow-up of L∞-weak solutions of an aggregation equation , 2010 .

[17]  Dong Li,et al.  Finite-Time Singularities of an Aggregation Equation in $${\mathbb {R}^n}$$ with Fractional Dissipation , 2009 .

[18]  Jose L. Rodrigo,et al.  Refined blowup criteria and nonsymmetric blowup of an aggregation equation , 2009 .

[19]  Andrea L. Bertozzi,et al.  Blow-up in multidimensional aggregation equations with mildly singular interaction kernels , 2009 .

[20]  Dong Li,et al.  ON A NONLOCAL AGGREGATION MODEL WITH NONLINEAR DIFFUSION , 2009, 0902.2017.

[21]  Jesús Rosado,et al.  Uniqueness of Bounded Solutions to Aggregation Equations by Optimal Transport Methods , 2009 .

[22]  Edoardo Mainini A global uniqueness result for an evolution problem arising in superconductivity , 2009 .

[23]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[24]  Martin Burger,et al.  Large time behavior of nonlocal aggregation models with nonlinear diffusion , 2008, Networks Heterog. Media.

[25]  Thomas Laurent,et al.  Local and Global Existence for an Aggregation Equation , 2007 .

[26]  José A. Carrillo,et al.  Infinite Time Aggregation for the Critical Patlak-Keller-Segel model in R 2 , 2007 .

[27]  Andrea L. Bertozzi,et al.  Finite-Time Blow-up of Solutions of an Aggregation Equation in Rn , 2007 .

[28]  Martin Burger,et al.  On an aggregation model with long and short range interactions , 2007 .

[29]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[30]  M. Bodnar,et al.  An integro-differential equation arising as a limit of individual cell-based models , 2006 .

[31]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[32]  Darryl D. Holm,et al.  Formation of clumps and patches in self-aggregation of finite-size particles , 2005, nlin/0506020.

[33]  A. Bertozzi,et al.  A Nonlocal Continuum Model for Biological Aggregation , 2005, Bulletin of mathematical biology.

[34]  Benoît Perthame,et al.  Two-dimensional Keller-Segel model: Optimal critical mass and qualitative properties of the solutions , 2006 .

[35]  Ping Zhang,et al.  Global solutions to vortex density equations arising from sup-conductivity , 2005 .

[36]  D. Morale,et al.  An interacting particle system modelling aggregation behavior: from individuals to populations , 2005, Journal of mathematical biology.

[37]  Benoît Perthame,et al.  Optimal critical mass in the two dimensional Keller–Segel model in R2 , 2004 .

[38]  G. Toscani,et al.  Long-Time Asymptotics of Kinetic Models of Granular Flows , 2004 .

[39]  Andrea L. Bertozzi,et al.  Swarming Patterns in a Two-Dimensional Kinematic Model for Biological Groups , 2004, SIAM J. Appl. Math..

[40]  C. Villani,et al.  Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates , 2003 .

[41]  A. Mogilner,et al.  Mathematical Biology Mutual Interactions, Potentials, and Individual Distance in a Social Aggregation , 2003 .

[42]  Qiang Du,et al.  Existence of Weak Solutions to Some Vortex Density Models , 2003, SIAM J. Math. Anal..

[43]  F. Poupaud,et al.  Diagonal Defect Measures, Adhesion Dynamics and Euler Equation , 2002 .

[44]  Kevin M. Passino,et al.  Stability analysis of swarms , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[45]  Andrew J. Majda,et al.  Vorticity and Incompressible Flow: Index , 2001 .

[46]  F. Poupaud,et al.  High-field Limit for the Vlasov-poisson-fokker-planck System , 2022 .

[47]  Giuseppe Toscani,et al.  One-dimensional kinetic models of granular flows , 2000 .

[48]  Sylvia Serfaty,et al.  A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .

[49]  Vincenzo Capasso,et al.  Modeling the aggregative behavior of ants of the species Polyergus rufescens , 2000 .

[50]  Ping Zhang,et al.  On the hydrodynamic limit of Ginzburg-Landau vortices , 1999 .

[51]  M. Brenner,et al.  Diffusion, attraction and collapse , 1999 .

[52]  A. Mogilner,et al.  A non-local model for a swarm , 1999 .

[53]  Wojbor A. Woyczyński,et al.  Global and Exploding Solutions for Nonlocal Quadratic Evolution Problems , 1998, SIAM J. Appl. Math..

[54]  Norman J. Zabusky,et al.  Contour Dynamics for the Euler Equations in Two Dimensions , 1997 .

[55]  R. Robert Unicité de la solution faible à support compact de l’équation de Vlasov-Poisson , 1997 .

[56]  E. Caglioti,et al.  A kinetic equation for granular media , 2009 .

[57]  E Weinan,et al.  Dynamics of vortex liquids in Ginzburg-Landau theories with applications to superconductivity. , 1994, Physical review. B, Condensed matter.

[58]  Timothy S. Murphy,et al.  Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals , 1993 .

[59]  Andrea L. Bertozzi,et al.  Global regularity for vortex patches , 1993 .

[60]  David G. Dritschel A fast contour dynamics method for many‐vortex calculations in two‐dimensional flows , 1993 .

[61]  J. Chemin,et al.  Persistance de structures géométriques dans les fluides incompressibles bidimensionnels , 1993 .

[62]  N. Zabusky,et al.  A new, but flawed, numerical method for vortex patch evolution in two dimensions , 1991 .

[63]  T. Buttke,et al.  A fast adaptive vortex method for patches of constant vorticity in two dimensions , 1990 .

[64]  Andrea L. Bertozzi,et al.  Heteroclinic orbits and chaotic dynamics in planar fluid flows , 1988 .

[65]  The dynamics of a columnar vortex in an imposed strain , 1984 .

[66]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[67]  S. Kida Motion of an Elliptic Vortex in a Uniform Shear Flow , 1981 .

[68]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[69]  V. I. Yudovich,et al.  Non-stationary flow of an ideal incompressible liquid , 1963 .