Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution
暂无分享,去创建一个
[1] W. Marsden. I and J , 2012 .
[2] D. Holz,et al. Ultrahigh precision cosmology from gravitational waves , 2009, 0906.3752.
[3] J. Sollerman,et al. Reducing the gravitational lensing scatter of type Ia supernovae without introducing any extra bias , 2008, 0810.4329.
[4] Edward K. Porter,et al. Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce , 2008, 0811.1011.
[5] Ny,et al. Prompt Shocks in the Gas Disk around a Recoiling Supermassive Black Hole Binary , 2008, 0801.0739.
[6] Chelsea L. MacLeod,et al. Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.
[7] R. Lang,et al. Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.
[8] W. M. Wood-Vasey,et al. Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.
[9] A. Goobar,et al. Tuning Gravitationally Lensed Standard Sirens , 2006, astro-ph/0611334.
[10] A. Cooray,et al. Large-scale bulk motions complicate the hubble diagram , 2006, astro-ph/0601377.
[11] D. Holz,et al. Short GRB and binary black hole standard sirens as a probe of dark energy , 2006, astro-ph/0601275.
[12] L. Hui,et al. Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys , 2005, astro-ph/0512159.
[13] D. Holz,et al. Problems with small area surveys: lensing covariance of supernova distance measurements. , 2005, Physical review letters.
[14] A. Goobar,et al. Corrections for Gravitational Lensing of Supernovae: Better than Average? , 2005, astro-ph/0506764.
[15] Z. Frei,et al. Finding the Electromagnetic Counterparts of Cosmological Standard Sirens , 2005, astro-ph/0505394.
[16] J. Brinkmann,et al. Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.
[17] Daniel E. Holz,et al. Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.
[18] E. Phinney,et al. The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.
[19] J. Frieman,et al. The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.
[20] D. Bacon,et al. Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.
[21] D. Holz,et al. Safety in Numbers: Gravitational Lensing Degradation of the Luminosity Distance-Redshift Relation , 2004, astro-ph/0412173.
[22] D. Holz,et al. Cosmology with coalescing massive black holes , 2002, astro-ph/0212218.
[23] J. Frieman,et al. Corrective Lenses for High-Redshift Supernovae , 2002, astro-ph/0206339.
[24] D. Holz,et al. A Universal Probability Distribution Function for Weak-lensing Amplification , 2002, astro-ph/0204169.
[25] Ravi K. Sheth Giuseppe Tormen. Large scale bias and the peak background split , 1999, astro-ph/9901122.
[26] I. Hook,et al. Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.
[27] A. G. Alexei,et al. OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .
[28] A. Riess,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[29] D. Holz,et al. A New method for determining cumulative gravitational lensing effects in inhomogeneous universes , 1997, astro-ph/9708036.
[30] S. White,et al. A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.
[31] R. Cen,et al. Effects of Weak Gravitational Lensing from Large-Scale Structure on the Determination of q0 , 1996, astro-ph/9607084.
[32] Physical Review Letters 63 , 1989 .
[33] B. Schutz. Determining the Hubble constant from gravitational wave observations , 1986, Nature.