Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution

Gravitational wave sources are a promising cosmological standard candle because their intrinsic luminosities are determined by fundamental physics (and are insensitive to dust extinction). They are, however, affected by weak lensing magnification due to the gravitational lensing from structures along the line of sight. This lensing is a source of uncertainty in the distance determination, even in the limit of perfect standard candle measurements. It is commonly believed that the uncertainty in the distance to an ensemble of gravitational wave sources is limited by the standard deviation of the lensing magnification distribution divided by the square root of the number of sources. Here we show that by exploiting the non-Gaussian nature of the lensing magnification distribution, we can improve this distance determination, typically by a factor of 2-3; we provide a fitting formula for the effective distance accuracy as a function of redshift for sources where the lensing noise dominates.

[1]  W. Marsden I and J , 2012 .

[2]  D. Holz,et al.  Ultrahigh precision cosmology from gravitational waves , 2009, 0906.3752.

[3]  J. Sollerman,et al.  Reducing the gravitational lensing scatter of type Ia supernovae without introducing any extra bias , 2008, 0810.4329.

[4]  Edward K. Porter,et al.  Massive black-hole binary inspirals: results from the LISA parameter estimation taskforce , 2008, 0811.1011.

[5]  Ny,et al.  Prompt Shocks in the Gas Disk around a Recoiling Supermassive Black Hole Binary , 2008, 0801.0739.

[6]  Chelsea L. MacLeod,et al.  Precision of Hubble constant derived using black hole binary absolute distances and statistical redshift information , 2007, 0712.0618.

[7]  R. Lang,et al.  Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.

[8]  W. M. Wood-Vasey,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[9]  A. Goobar,et al.  Tuning Gravitationally Lensed Standard Sirens , 2006, astro-ph/0611334.

[10]  A. Cooray,et al.  Large-scale bulk motions complicate the hubble diagram , 2006, astro-ph/0601377.

[11]  D. Holz,et al.  Short GRB and binary black hole standard sirens as a probe of dark energy , 2006, astro-ph/0601275.

[12]  L. Hui,et al.  Correlated fluctuations in luminosity distance and the importance of peculiar motion in supernova surveys , 2005, astro-ph/0512159.

[13]  D. Holz,et al.  Problems with small area surveys: lensing covariance of supernova distance measurements. , 2005, Physical review letters.

[14]  A. Goobar,et al.  Corrections for Gravitational Lensing of Supernovae: Better than Average? , 2005, astro-ph/0506764.

[15]  Z. Frei,et al.  Finding the Electromagnetic Counterparts of Cosmological Standard Sirens , 2005, astro-ph/0505394.

[16]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[17]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[18]  E. Phinney,et al.  The Afterglow of Massive Black Hole Coalescence , 2004, astro-ph/0410343.

[19]  J. Frieman,et al.  The Luminosity and Color Dependence of the Galaxy Correlation Function , 2004, astro-ph/0408569.

[20]  D. Bacon,et al.  Galaxy-Galaxy Flexion: Weak Lensing to Second Order , 2004, astro-ph/0406376.

[21]  D. Holz,et al.  Safety in Numbers: Gravitational Lensing Degradation of the Luminosity Distance-Redshift Relation , 2004, astro-ph/0412173.

[22]  D. Holz,et al.  Cosmology with coalescing massive black holes , 2002, astro-ph/0212218.

[23]  J. Frieman,et al.  Corrective Lenses for High-Redshift Supernovae , 2002, astro-ph/0206339.

[24]  D. Holz,et al.  A Universal Probability Distribution Function for Weak-lensing Amplification , 2002, astro-ph/0204169.

[25]  Ravi K. Sheth Giuseppe Tormen Large scale bias and the peak background split , 1999, astro-ph/9901122.

[26]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[27]  A. G. Alexei,et al.  OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT , 1998 .

[28]  A. Riess,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[29]  D. Holz,et al.  A New method for determining cumulative gravitational lensing effects in inhomogeneous universes , 1997, astro-ph/9708036.

[30]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[31]  R. Cen,et al.  Effects of Weak Gravitational Lensing from Large-Scale Structure on the Determination of q0 , 1996, astro-ph/9607084.

[32]  Physical Review Letters 63 , 1989 .

[33]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.