Anchoring palladium nanoparticles on CsPbBr3 perovskite nanocrystals for enhanced photocatalytic CO2 reduction

[1]  Zhigang Zang,et al.  Photoelectron‐Extractive and Ambient‐Stable CsPbBr3@SnO2 Nanocrystals for High‐Performance Photodetection , 2022, Laser & Photonics Reviews.

[2]  Hui Huang,et al.  Layered double hydroxide nanosheets activate CsPbBr3 nanocrystals for enhanced photocatalytic CO2 reduction , 2022, Nano Research.

[3]  Jun Huang,et al.  Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO2 reduction , 2022, Chemical Engineering Journal.

[4]  J. L. D. Da Silva,et al.  Ab Initio Study of CO2 Activation on Pristine and Fe-Decorated WS2 Nanoflakes. , 2021, The journal of physical chemistry. A.

[5]  Youyong Li,et al.  Construction of Single-Atom Platinum Catalysts Enabled by CsPbBr3 Nanocrystals. , 2021, ACS nano.

[6]  Xuhui Sun,et al.  All‐Inorganic CsPbBr3 Perovskite Nanocrystals/2D Non‐Layered Cadmium Sulfide Selenide for High‐Performance Photodetectors by Energy Band Alignment Engineering , 2021, Advanced Functional Materials.

[7]  Jiayue Xu,et al.  Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction , 2021 .

[8]  Peng Liu,et al.  A general strategy for obtaining BiOX nanoplates derived Bi nanosheets as efficient CO2 reduction catalysts by enhancing CO2•- adsorption and electron transfer. , 2021, Journal of colloid and interface science.

[9]  Zhigang Zang,et al.  Highly stable CsPbBr3 quantum dots by silica-coating and ligand modification for white light-emitting diodes and visible light communication , 2021 .

[10]  Zhonglin Du,et al.  Recent advances in metal halide perovskite photocatalysts: Properties, synthesis and applications , 2021 .

[11]  Xudong Wang,et al.  Plasmonic CsPbBr3–Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction , 2021 .

[12]  Chuanzhi Sun,et al.  CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction , 2020, Chemical Engineering Journal.

[13]  Ho Won Jang,et al.  Towards artificial photosynthesis: Sustainable hydrogen utilization for photocatalytic reduction of CO2 to high-value renewable fuels , 2020 .

[14]  Baoyi Wang,et al.  Photocatalytic reduction of CO2 on BiOX: Effect of halogen element type and surface oxygen vacancy mediated mechanism , 2020 .

[15]  Jiaguo Yu,et al.  Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction , 2020, Nature Communications.

[16]  Xudong Wang,et al.  Z‐Scheme 2D/2D Heterojunction of CsPbBr3/Bi2WO6 for Improved Photocatalytic CO2 Reduction , 2020, Advanced Functional Materials.

[17]  Tierui Zhang,et al.  Selective photocatalytic CO2 reduction over Zn-based layered double hydroxides containing tri or tetravalent metals. , 2020, Science bulletin.

[18]  M. Roeffaers,et al.  Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance , 2020 .

[19]  Q. Shen,et al.  Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes , 2020, Chemistry of Materials.

[20]  Ying Yu,et al.  Reaction mechanisms for reduction of CO2 to CO on monolayer MoS2 , 2020 .

[21]  E. Sargent,et al.  Active Sulfur Sites in Semimetallic Titanium Disulfide Enable CO2 Electroreduction , 2020, ACS Catalysis.

[22]  Charlotte K. Williams,et al.  The technological and economic prospects for CO2 utilization and removal , 2019, Nature.

[23]  Youshen Wu,et al.  CsPbBr3 Perovskite Nanocrystal Grown on MXene Nanosheets for Enhanced Photoelectric Detection and Photocatalytic CO2 Reduction. , 2019, The journal of physical chemistry letters.

[24]  Tongbu Lu,et al.  Encapsulating Perovskite Quantum Dots in Iron-Based Metal-Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction. , 2019, Angewandte Chemie.

[25]  Hao Wu,et al.  Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction , 2019, Advanced materials.

[26]  T. Do,et al.  Critical Aspects and Recent Advances in Structural Engineering of Photocatalysts for Sunlight‐Driven Photocatalytic Reduction of CO2 into Fuels , 2019, Advanced Functional Materials.

[27]  Wenguang Tu,et al.  Amino-Assisted Anchoring of CsPbBr3 Perovskite Quantum Dots on Porous g-C3 N4 for Enhanced Photocatalytic CO2 Reduction. , 2018, Angewandte Chemie.

[28]  Jaeyoung Heo,et al.  Plasmonic Control of Multi-Electron Transfer and C-C Coupling in Visible-Light-Driven CO2 Reduction on Au Nanoparticles. , 2018, Nano letters.

[29]  Yang-Fan Xu,et al.  A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. , 2017, Journal of the American Chemical Society.

[30]  Licheng Sun,et al.  Perovskite-based nanocubes with simultaneously improved visible-light absorption and charge separation enabling efficient photocatalytic CO2 reduction , 2016 .

[31]  A. Mohamed,et al.  Oxygen‐Deficient BiOBr as a Highly Stable Photocatalyst for Efficient CO2 Reduction into Renewable Carbon‐Neutral Fuels , 2016 .

[32]  Sai Zhang,et al.  High Catalytic Activity and Chemoselectivity of Sub-nanometric Pd Clusters on Porous Nanorods of CeO2 for Hydrogenation of Nitroarenes. , 2016, Journal of the American Chemical Society.

[33]  Jiaguo Yu,et al.  Graphene-Based Photocatalysts for CO2 Reduction to Solar Fuel. , 2015, The journal of physical chemistry letters.

[34]  M. Antonietti,et al.  A stable single-site palladium catalyst for hydrogenations. , 2015, Angewandte Chemie.

[35]  Yong Zhou,et al.  Hexahedron Prism-Anchored Octahedronal CeO2: Crystal Facet-Based Homojunction Promoting Efficient Solar Fuel Synthesis. , 2015, Journal of the American Chemical Society.

[36]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[37]  Jiaguo Yu,et al.  Design and fabrication of semiconductor photocatalyst for photocatalytic reduction of CO2 to solar fuel , 2014, Science China Materials.

[38]  Kimfung Li,et al.  Cu2O/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of CO2 , 2014, ChemSusChem.

[39]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[40]  B. Meyer,et al.  CO2 activation by ZnO through the formation of an unusual tridentate surface carbonate. , 2007, Angewandte Chemie.