Consistent estimation of the basic neighborhood of Markov random fields

For Markov random fields with finite set of states, a modification of the Bayesian information criterion admits strongly consistent estimation of the smallest region that determines the conditional distributions. Phase transition or nonstationarity do not affect the result.

[1]  J. Besag Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .

[2]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[3]  Frans M. J. Willems,et al.  The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.

[4]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[5]  Imre Csiszár,et al.  Context tree estimation for not necessarily finite memory processes, via BIC and MDL , 2005, IEEE Transactions on Information Theory.

[6]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[7]  D. Haughton On the Choice of a Model to Fit Data from an Exponential Family , 1988 .

[8]  I. Csiszár,et al.  The consistency of the BIC Markov order estimator , 2000 .

[9]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[10]  F. Comets On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice , 1992 .

[11]  P. Bühlmann,et al.  Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .

[12]  Imre Csiszár Large-scale typicality of Markov sample paths and consistency of MDL Order estimators , 2002, IEEE Trans. Inf. Theory.

[13]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .

[14]  B. Gidas Consistency of Maximum Likelihood and Pseudo-Likelihood Estimators for Gibbs Distributions , 1988 .

[15]  Meir Feder,et al.  A universal finite memory source , 1995, IEEE Trans. Inf. Theory.

[16]  F. Papangelou GIBBS MEASURES AND PHASE TRANSITIONS (de Gruyter Studies in Mathematics 9) , 1990 .

[17]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[18]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[19]  D. K. Pickard Inference for Discrete Markov Fields: The Simplest Nontrivial Case , 1987 .

[20]  C. Ji,et al.  A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood , 1996 .