Consistent estimation of the basic neighborhood of Markov random fields
暂无分享,去创建一个
[1] J. Besag. Efficiency of pseudolikelihood estimation for simple Gaussian fields , 1977 .
[2] H. Akaike,et al. Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .
[3] Frans M. J. Willems,et al. The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.
[4] G. Schwarz. Estimating the Dimension of a Model , 1978 .
[5] Imre Csiszár,et al. Context tree estimation for not necessarily finite memory processes, via BIC and MDL , 2005, IEEE Transactions on Information Theory.
[6] J. Besag. Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .
[7] D. Haughton. On the Choice of a Model to Fit Data from an Exponential Family , 1988 .
[8] I. Csiszár,et al. The consistency of the BIC Markov order estimator , 2000 .
[9] J. Besag. Statistical Analysis of Non-Lattice Data , 1975 .
[10] F. Comets. On Consistency of a Class of Estimators for Exponential Families of Markov Random Fields on the Lattice , 1992 .
[11] P. Bühlmann,et al. Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .
[12] Imre Csiszár. Large-scale typicality of Markov sample paths and consistency of MDL Order estimators , 2002, IEEE Trans. Inf. Theory.
[13] P. L. Dobruschin. The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .
[14] B. Gidas. Consistency of Maximum Likelihood and Pseudo-Likelihood Estimators for Gibbs Distributions , 1988 .
[15] Meir Feder,et al. A universal finite memory source , 1995, IEEE Trans. Inf. Theory.
[16] F. Papangelou. GIBBS MEASURES AND PHASE TRANSITIONS (de Gruyter Studies in Mathematics 9) , 1990 .
[17] Hans-Otto Georgii,et al. Gibbs Measures and Phase Transitions , 1988 .
[18] B. G. Quinn,et al. The determination of the order of an autoregression , 1979 .
[19] D. K. Pickard. Inference for Discrete Markov Fields: The Simplest Nontrivial Case , 1987 .
[20] C. Ji,et al. A consistent model selection procedure for Markov random fields based on penalized pseudolikelihood , 1996 .