The Normalized Matching Property in Random and Pseudorandom Bipartite Graphs

A bipartite graph $G(X,Y,E)$ with vertex partition $(X,Y)$ is said to have the Normalized Matching Property (NMP) if for any subset $S\subseteq X$ we have $\frac{|N(S)|}{|Y|}\geq\frac{|S|}{|X|}$. In this paper, we prove the following results about the Normalized Matching Property.  The random bipartite graph $\mathbb{G}(k,n,p)$ with $|X|=k,|Y|=n$, and $k\leq n<\exp(k)$, and each pair $(x,y)\in X\times Y$ being an edge in $\mathbb{G}$ independently with probability $p$ has $p=\frac{\log n}{k}$ as the threshold for NMP. This generalizes a classic result of Erdős-Rényi on the $\frac{\log n}{n}$ threshold for the existence of a perfect matching in $\mathbb{G}(n,n,p)$. A bipartite graph $G(X,Y)$, with $k=|X|\le |Y|=n$, is said to be Thomason pseudorandom (following A. Thomason (Discrete Math., 1989)) with parameters $(p,\varepsilon)$ if every $x\in X$ has degree at least $pn$ and every pair of distinct $x, x'\in X$ have at most $(1+\varepsilon)p^2n$ common neighbours. We show that Thomason pseudorandom graphs have the following property: Given $\varepsilon>0$ and $n\geq k\gg 0$, there exist functions $f,g$ with $f(x), g(x)\to 0$ as $x\to 0$, and sets $\mathrm{Del}_X\subset X, \  \mathrm{Del}_Y\subset Y$ with $|\mathrm{Del}_X|\leq f(\varepsilon)k,\ |\mathrm{Del}_Y|\leq g(\varepsilon)n$ such that $G(X\setminus \mathrm{Del}_X,Y\setminus \mathrm{Del}_Y)$ has NMP. Enroute, we prove an 'almost' vertex decomposition theorem: Every Thomason pseudorandom bipartite graph $G(X,Y)$ admits - except for a negligible portion of its vertex set - a partition of its vertex set into graphs that are spanned by trees that have NMP, and which arise organically through the Euclidean GCD algorithm. 

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  D. J. Kleitman On an extremal property of antichains in partial orders , 1974 .

[3]  Hunter S. Snevily Combinatorics of finite sets , 1991 .

[4]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[5]  M. Skala Hypergeometric tail inequalities: ending the insanity , 2013, 1311.5939.

[6]  Jun Wang,et al.  NORMALIZED MATCHING PROPERTY OF A CLASS OF SUBSPACE LATTICES , 2007 .

[7]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[8]  Jerrold R. Griggs,et al.  Sufficient Conditions for a Symmetric Chain Order , 1977 .

[9]  B. Sudakov,et al.  Pseudo-random Graphs , 2005, math/0503745.

[10]  Mei-Chu Chang,et al.  SOME PROBLEMS IN COMBINATORIAL NUMBER THEORY , 2007 .

[11]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[12]  Yu-Lun Chang,et al.  Some Remarks on Nestings in the Normalized Matching Posets of Rank 3 , 2018, Order.

[13]  Gábor Simonyi,et al.  Intersecting set systems and graphic matroids, , 1998, Discret. Math..

[14]  Shahriar Shahriari,et al.  Methods for nesting rank 3 normalized matching rank-unimodal posets , 2009, Discret. Math..

[15]  Douglas B. West,et al.  Some Remarks on Normalized Matching , 1983, J. Comb. Theory, Ser. A.

[16]  Jun Wang,et al.  Normalized matching property of the subgroup lattice of an abelian p-group , 2002, Discret. Math..

[17]  Andrew Thomason Dense expanders and pseudo-random bipartite graphs , 1989, Discret. Math..

[18]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[19]  Kaishun Wang,et al.  Normalized matching property of subspace posets in finite classical polar spaces , 2013, Finite Fields Their Appl..

[20]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[21]  Noga Alon,et al.  Additive Patterns in Multiplicative Subgroups , 2014 .

[22]  Uriel Feige,et al.  Max-min greedy matching , 2018, NetEcon@SIGMETRICS.