Dislocated projective synchronization between fractional-order chaotic systems and integer-order chaotic systems

Abstract This paper focuses on the dislocated projective synchronization (DPS) between the fractional-order and the integer-order chaotic systems. Based on the small-gain theorem, nonlinear controllers are designed to reach the DPS between the fractional-order and the integer-order chaotic systems. Numerical simulation illustrates the availability of the proposed scheme.

[1]  Xiaohua Zhang,et al.  Finite-time lag synchronization of time-varying delayed complex networks via periodically intermittent control and sliding mode control , 2016, Neurocomputing.

[2]  Ljupco Kocarev,et al.  General approach for chaotic synchronization with applications to communication. , 1995, Physical review letters.

[3]  Subir Das,et al.  Function projective synchronization between four dimensional chaotic systems with uncertain parameters using modified adaptive control method , 2014 .

[4]  Junbiao Guan,et al.  Adaptive modified generalized function projection synchronization between integer-order and fractional-order chaotic systems , 2016 .

[5]  Chun-Lai Li,et al.  A new hyperchaotic system and its generalized synchronization , 2014 .

[6]  Hu Jia,et al.  Adaptive synchronization of uncertain Liu system via nonlinear input , 2008 .

[7]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[8]  Mohammad Ali Badamchizadeh,et al.  An approach to achieve modified projective synchronization between different types of fractional-order chaotic systems with time-varying delays , 2015 .

[9]  Wenquan Chen,et al.  Projective synchronization of different fractional-order chaotic systems with non-identical orders , 2012 .

[10]  Zhou Feng,et al.  Projective synchronization for a fractional-order chaotic system via single sinusoidal coupling , 2016 .

[11]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[12]  Xinlei An,et al.  A new scheme of general hybrid projective complete dislocated synchronization , 2011 .

[13]  Alexey A. Koronovskii,et al.  Generalized synchronization of chaos for secure communication: Remarkable stability to noise , 2010, 1302.4067.

[14]  Jun Jiang,et al.  Complex dynamical behavior and modified projective synchronization in fractional-order hyper-chaotic complex Lü system , 2015 .

[15]  Yongguang Yu,et al.  Function projective synchronization between integer-order and stochastic fractional-order nonlinear systems. , 2016, ISA transactions.

[16]  Tao Wang,et al.  Chaos control and hybrid projective synchronization of several new chaotic systems , 2012, Appl. Math. Comput..

[17]  Min Fu-Hong,et al.  Function Projective Synchronization for Two Gyroscopes under Specific Constraints , 2013 .

[18]  Dumitru Baleanu,et al.  Complete synchronization of commensurate fractional order chaotic systems using sliding mode control , 2013 .

[19]  Zhou Ping,et al.  Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems , 2010 .

[20]  Xin-Chu Fu,et al.  Projective Synchronization of Driving–Response Systems and Its Application to Secure Communication , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[21]  Chongxin Liu,et al.  A new chaotic attractor , 2004 .

[22]  Guangzhao Cui,et al.  General hybrid projective complete dislocated synchronization between a class of chaotic real nonlinear systems and a class of chaotic complex nonlinear systems , 2015 .

[23]  Guang-Jun Zhang,et al.  Function Projective Synchronization and Parameter Identification of Different Fractional-order Hyper-chaotic Systems: Function Projective Synchronization and Parameter Identification of Different Fractional-order Hyper-chaotic Systems , 2014 .

[24]  W. Deng,et al.  Chaos synchronization of the fractional Lü system , 2005 .

[25]  A. E. Matouk,et al.  Chaos, feedback control and synchronization of a fractional-order modified Autonomous Van der Pol–Duffing circuit , 2011 .