High-bandwidth nanopositioner with magnetoresistance based position sensing

Abstract Nanopositioning is a key enabling technology for nanoscale metrology and manipulation. This paper details experimental studies aimed at achieving high-bandwidth nanopositioning through a combination of scanner design with excellent dynamical behavior, novel high-bandwidth position sensing, and modern control techniques. Through a combination of high stiffness/rigidity of the flexures, a low carried mass, and uncomplicated mechanical connections, an X / Y scanner is designed which has the first resonant frequencies beyond 4 kHz in both scan axes. For closed-loop operation of such fast scanners, there is a need for high-bandwidth, low-noise sensing schemes. A sensing concept based on magnetoresistance is presented that shows great potential towards providing low-noise position sensing over a very wide bandwidth. Atomic force microscopy imaging experiments of nanoscale structures are presented to illustrate the frame-per-second imaging capability of the nanopositioning system.

[1]  F. Allgöwer,et al.  High performance feedback for fast scanning atomic force microscopes , 2001 .

[2]  Srinivasa M. Salapaka,et al.  Design methodologies for robust nano-positioning , 2005, IEEE Transactions on Control Systems Technology.

[3]  Abdullah Al Mamun,et al.  Hard Disk Drive: Mechatronics and Control , 2006 .

[4]  A. Knoll,et al.  Nanoscale Three-Dimensional Patterning of Molecular Resists by Scanning Probes , 2010, Science.

[5]  H. Rothuizen,et al.  Scanning Thermal Microscopy for Fast Multiscale Imaging and Manipulation , 2010, IEEE Transactions on Nanotechnology.

[6]  M. Horton,et al.  Breaking the speed limit with atomic force microscopy , 2007 .

[7]  A. Sebastian,et al.  Nanopositioning for probe-based data storage [Applications of Control] , 2008, IEEE Control Systems.

[8]  I. A. Mahmood,et al.  Fast spiral-scan atomic force microscopy , 2009, Nanotechnology.

[9]  Takeshi Fukuma,et al.  High resonance frequency force microscope scanner using inertia balance support , 2008 .

[10]  H. Rothuizen,et al.  Design of Power-Optimized Thermal Cantilevers for Scanning Probe Topography Sensing , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[11]  Jonathan D. Adams,et al.  Components for high speed atomic force microscopy. , 2006, Ultramicroscopy.

[12]  Haris Pozidis,et al.  Nanopositioning for Probe-Based Data Storage , 2008 .

[13]  A. Fleming,et al.  A grounded-load charge amplifier for reducing hysteresis in piezoelectric tube scanners , 2005 .

[14]  Toshio Ando,et al.  Video imaging of walking myosin V by high-speed atomic force microscopy , 2010, Nature.

[15]  M.V. Salapaka,et al.  Scanning Probe Microscopy , 2008, IEEE Control Systems.

[16]  A. Fleming,et al.  Bridging the gap between conventional and video-speed scanning probe microscopes. , 2010, Ultramicroscopy.

[17]  Haralampos Pozidis,et al.  High Speed Nanopositioner with Magneto Resistance-Based Position Sensing , 2010 .

[18]  M. J. Rost,et al.  Scanning probe microscopy at video-rate , 2008 .

[19]  Placid Mathew Ferreira,et al.  Robust Control of a Parallel- Kinematic Nanopositioner , 2008 .

[20]  Santosh Devasia,et al.  A Survey of Control Issues in Nanopositioning , 2007, IEEE Transactions on Control Systems Technology.

[21]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[22]  S. O. Reza Moheimani,et al.  Reducing Cross-Coupling in a Compliant XY Nanopositioner for Fast and Accurate Raster Scanning , 2010, IEEE Transactions on Control Systems Technology.

[23]  Karl Johan Åström,et al.  Design and Modeling of a High-Speed AFM-Scanner , 2007, IEEE Transactions on Control Systems Technology.

[24]  A. Sebastian,et al.  Control of MEMS-Based Scanning-Probe Data-Storage Devices , 2007, IEEE Transactions on Control Systems Technology.

[25]  S. Devasia,et al.  Feedforward control of piezoactuators in atomic force microscope systems , 2009, IEEE Control Systems.

[26]  Theodore Antonakopoulos,et al.  Probe-based ultrahigh-density storage technology , 2008, IBM J. Res. Dev..

[27]  A. Sebastian,et al.  Modeling and Experimental Identification of Silicon Microheater Dynamics: A Systems Approach , 2008, Journal of Microelectromechanical Systems.

[28]  L.Y. Pao,et al.  A Tutorial on the Mechanisms, Dynamics, and Control of Atomic Force Microscopes , 2007, 2007 American Control Conference.

[29]  M. Tomizuka,et al.  Precision Positioning of Wafer Scanners Segmented Iterative Learning Control for Nonrepetitive Disturbances [Applications of Control] , 2007, IEEE Control Systems.

[30]  T. Ando,et al.  High-speed atomic force microscopy for nano-visualization of dynamic biomolecular processes , 2008 .

[31]  A. Panchula,et al.  Magnetically engineered spintronic sensors and memory , 2003, Proc. IEEE.

[32]  Theodore Antonakopoulos,et al.  Nanopositioning using the spiral of Archimedes: The probe-based storage case , 2010 .

[33]  Murti V. Salapaka,et al.  High bandwidth nano-positioner: A robust control approach , 2002 .

[34]  Theodore Antonakopoulos,et al.  High-speed spiral nanopositioning , 2011 .

[35]  Hideki Kandori,et al.  High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. , 2010, Nature nanotechnology.

[36]  Kam K Leang,et al.  Design, characterization, and control of a monolithic three-axis high-bandwidth nanopositioning stage , 2010, Proceedings of the 2010 American Control Conference.

[37]  J. Daughton Spin-dependent sensors , 2003, Proc. IEEE.

[38]  W. Häberle,et al.  Scanning probe microscopy based on magnetoresistive sensing , 2011, Nanotechnology.