On the design and structure of artificial eyes for tracking tasks

Nature developed different types of eyes for different functions and creatures. In this work the design parameters to common eye types are analyzed with respect to visual tracking abilities. The goal is to select optimal parameters for building artificial vision systems. The parameters investigated are different tessellations and resolutions of eye cells (pixels), the window size or field of view, the frequency to acquire visual input and the system latency or reaction time. The analyses shows that following a target is best achieved at high frequency with small target windows or with a space-variant tessellation. While the first case enables high resolution for smooth motions, the second case trades resolution for speed and jerky motions. An experimental set-up demonstrates the performance characteristics

[1]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Jakub Segen,et al.  Performance evaluation of people tracking systems , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.

[3]  David S. Young,et al.  First Order Optic Flow from Log-Polar Sampled Images , 1994, ECCV.

[4]  Gregory D. Hager,et al.  X Vision: A Portable Substrate for Real-Time Vision Applications , 1998, Comput. Vis. Image Underst..

[5]  R. Etienne-Cummings,et al.  Biologically inspired vision sensors , 2002, 2002 23rd International Conference on Microelectronics. Proceedings (Cat. No.02TH8595).

[6]  Dana H. Ballard,et al.  Behavioural constraints on animate vision , 1989, Image Vis. Comput..

[7]  P. Anandan,et al.  Electronic front-end processor for active vision , 1992, Other Conferences.

[8]  David G. Lowe,et al.  Robust model-based motion tracking through the integration of search and estimation , 1992, International Journal of Computer Vision.

[9]  Chris Harris,et al.  Tracking with rigid models , 1993 .

[10]  Yiannis Aloimonos,et al.  Purposive, qualitative, active vision , 1992, CVGIP Image Underst..

[11]  Giulio Sandini,et al.  A Foveated Retina-Like Sensor Using CCD Technology , 1989, Analog VLSI Implementation of Neural Systems.

[12]  Andrew Blake,et al.  Dynamic contours: real-time active splines , 1993 .

[13]  Masatoshi Ishikawa,et al.  Self-windowing for high speed vision , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[14]  Benjamin B. Bederson,et al.  A miniaturized space-variant active vision system: Cortex-I , 1995, Machine Vision and Applications.

[15]  Richard Alan Peters,et al.  Object detection in indoor scenes using log-polar mapping , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[16]  Y. Bar-Shalom Tracking and data association , 1988 .

[17]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[18]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[19]  Matthew J. Barth,et al.  A fast panoramic imaging system and intelligent imaging technique for mobile robots , 1996, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS '96.

[20]  Ulrich Muehlmann,et al.  A new high speed cmos camera for real-time tracking applications , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[21]  Pradeep K. Khosla,et al.  Vision resolvability for visually servoed manipulation , 1996 .

[22]  Peter I. Corke,et al.  Dynamic effects in visual closed-loop systems , 1996, IEEE Trans. Robotics Autom..

[23]  Margrit Betke,et al.  Evaluation of tracking methods for human-computer interaction , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[24]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[25]  Yasuo Kuniyoshi,et al.  Robust real-time tracking on an active vision head , 1997, Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS '97.

[26]  Hiroshi Ishiguro,et al.  Omni-Directional Stereo , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Simon Fürst,et al.  A vision based navigation system for autonomous aircraft , 1999, Robotics Auton. Syst..

[28]  Giulio Sandini,et al.  Dynamic Vergence Using Log-Polar Images , 1997, International Journal of Computer Vision.

[29]  James L. Crowley,et al.  Vision as Process , 1995 .