Roadmap on superoscillations

Superoscillations are band-limited functions with the counterintuitive property that they can vary arbitrarily faster than their fastest Fourier component, over arbitrarily long intervals. Modern studies originated in quantum theory, but there were anticipations in radar and optics. The mathematical understanding—still being explored—recognises that functions are extremely small where they superoscillate; this has implications for information theory. Applications to optical vortices, sub-wavelength microscopy and related areas of nanoscience are now moving from the theoretical and the demonstrative to the practical. This Roadmap surveys all these areas, providing background, current research, and anticipating future developments.

[1]  A. Kempf Black Holes, Bandwidths and Beethoven , 1999 .

[2]  Nikolay I. Zheludev,et al.  Point spread function of the optical needle super-oscillatory lens , 2014 .

[3]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[4]  Michael V Berry,et al.  Evanescent and real waves in quantum billiards and Gaussian beams , 1994 .

[5]  Xiangang Luo,et al.  Surface plasmon resonant interference nanolithography technique , 2004 .

[6]  J. Masajada,et al.  Analytical model of the optical vortex microscope. , 2016, Applied optics.

[7]  Daniele C. Struppa,et al.  Continuity of some operators arising in the theory of superoscillations , 2018 .

[8]  K. Bliokh,et al.  Goos-Hänchen and Imbert-Fedorov shifts of polarized vortex beams. , 2008, Optics letters.

[9]  G. Eleftheriades,et al.  Sub-Wavelength Focusing at the Multi-Wavelength Range Using Superoscillations: An Experimental Demonstration , 2011, IEEE Transactions on Antennas and Propagation.

[10]  Achim Kempf,et al.  Locality and entanglement in bandlimited quantum field theory , 2015, 1508.05953.

[11]  Jinghua Teng,et al.  Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications , 2018, Advanced materials.

[12]  Y. Zhang,et al.  Three-dimensional supercritical resolved light-induced magnetic holography , 2017, Science Advances.

[13]  W. H. Kraan,et al.  Observation of the Goos-Hänchen shift with neutrons. , 2010, Physical review letters.

[14]  J. Anandan,et al.  Quantum Coherenece and Reality, In Celebration of the 60th Birthday of Yakir Aharonov , 1995 .

[15]  Jinghua Teng,et al.  Ultrahigh-capacity non-periodic photon sieves operating in visible light , 2015, Nature Communications.

[16]  Stephen Y. Chou,et al.  Imprint of sub-25 nm vias and trenches in polymers , 1995 .

[17]  Ady Arie,et al.  Particle manipulation beyond the diffraction limit using structured super-oscillating light beams , 2016, Light: Science & Applications.

[18]  Sam Morley-Short,et al.  Representing fractals by superoscillations , 2017 .

[19]  G. Toraldo di Francia,et al.  Super-gain antennas and optical resolving power , 1952 .

[20]  N. Zheludev,et al.  Nanohole array as a lens. , 2008, Nano letters.

[21]  Michael V Berry,et al.  Suppression of superoscillations by noise , 2017 .

[22]  Moshe Schwartz,et al.  Yield-Optimized Superoscillations , 2012, IEEE Transactions on Signal Processing.

[23]  Changtao Wang,et al.  Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing , 2015 .

[24]  Uang,et al.  Optimising superoscillatory spots for far-field super-resolution imaging , 2018 .

[25]  S. Popescu,et al.  On conservation laws in quantum mechanics , 2016, Proceedings of the National Academy of Sciences.

[26]  A. Arie,et al.  Experimental realization of structured super-oscillatory pulses. , 2018, Optics Express.

[27]  M. Hong,et al.  Breaking the diffraction limit in far field by planar metalens , 2017 .

[28]  F. Nori,et al.  Anomalous time delays and quantum weak measurements in optical micro-resonators , 2016, Nature Communications.

[29]  D. Struppa,et al.  Quantum harmonic oscillator with superoscillating initial datum , 2014, 1411.4112.

[30]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[31]  A. Arie,et al.  Super-narrow frequency conversion , 2015 .

[32]  Vaidman,et al.  Superpositions of time evolutions of a quantum system and a quantum time-translation machine. , 1990, Physical review letters.

[33]  N. Zheludev,et al.  Far-field Metamaterial Superlens , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[34]  George V. Eleftheriades,et al.  Superoscillations without Sidebands: Power-Efficient Sub-Diffraction Imaging with Propagating Waves , 2015, Scientific Reports.

[35]  Nikolay I. Zheludev,et al.  Super-Oscillatory Imaging of Nanoparticle Interactions with Neurons , 2015 .

[36]  J. P. Woerdman,et al.  Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. , 2008, Optics letters.

[37]  Vidal F. Canales,et al.  Focusing properties of annular binary phase filters , 2004 .

[38]  A. Bahabad,et al.  Super-Oscillating Airy Pattern , 2016 .

[39]  Minseok Kim,et al.  Superresolution far-field imaging of complex objects using reduced superoscillating ripples , 2017 .

[40]  G. Liang,et al.  Generating a three-dimensional hollow spot with sub-diffraction transverse size by a focused cylindrical vector wave. , 2018, Optics express.

[41]  Sandu Popescu,et al.  Evolution of quantum superoscillations, and optical superresolution without evanescent waves , 2006 .

[42]  P.J.S.G. Ferreira,et al.  Superoscillations: Faster Than the Nyquist Rate , 2006, IEEE Transactions on Signal Processing.

[43]  Xiaoliang Ma,et al.  Achromatic flat optical components via compensation between structure and material dispersions , 2016, Scientific Reports.

[44]  Guanghui Yuan,et al.  “Plasmonics” in free space: observation of giant wavevectors, vortices, and energy backflow in superoscillatory optical fields , 2019, Light, science & applications.

[45]  H. Wolter TRANSLATION: Concerning the path of light upon total reflection , 2009 .

[46]  Spin — Hall effect and circular birefringence of a uniaxial crystal plate , 2016, 2017 Conference on Lasers and Electro-Optics (CLEO).

[47]  A. Aiello,et al.  Goos–Hänchen and Imbert–Fedorov shifts from a quantum-mechanical perspective , 2013, 1307.6057.

[48]  D. Tsai,et al.  Broadband achromatic optical metasurface devices , 2017, Nature Communications.

[49]  V. G. Fedoseyev Spin-independent transverse shift of the centre of gravity of a reflected and of a refracted light beam , 2001 .

[50]  A. Bahabad,et al.  Axial sub-Fourier focusing of an optical beam. , 2017, Optics letters.

[51]  O. Mücke,et al.  Coherent pulse synthesis: towards sub‐cycle optical waveforms , 2015 .

[52]  Guanghui Yuan,et al.  Flat super-oscillatory lens for heat-assisted magnetic recording with sub-50 nm resolution. , 2014, Optics express.

[53]  Achim Kempf,et al.  Four aspects of superoscillations , 2018, Quantum Studies: Mathematics and Foundations.

[54]  D. Struppa,et al.  Schrödinger evolution of superoscillations under different potentials , 2018 .

[55]  Jinghua Teng,et al.  Optimization‐free superoscillatory lens using phase and amplitude masks , 2014 .

[56]  Christophe Couteau,et al.  Quantum super-oscillation of a single photon , 2015, Light: Science & Applications.

[57]  Minghui Hong,et al.  Shaping a Subwavelength Needle with Ultra-long Focal Length by Focusing Azimuthally Polarized Light , 2015, Scientific Reports.

[58]  Nikolay I Zheludev,et al.  Super-resolution without evanescent waves. , 2008, Nano letters.

[59]  Achim Kempf,et al.  New methods for creating superoscillations , 2016, 1608.03121.

[60]  W. Denk,et al.  Optical stethoscopy: Image recording with resolution λ/20 , 1984 .

[61]  Changtao Wang,et al.  Achromatic Broadband Super‐Resolution Imaging by Super‐Oscillatory Metasurface , 2018, Laser & Photonics Reviews.

[62]  D. Struppa,et al.  On the Cauchy problem for the Schrödinger equation with superoscillatory initial data , 2013 .

[63]  Heather A. Harrington,et al.  Nanog Fluctuations in Embryonic Stem Cells Highlight the Problem of Measurement in Cell Biology , 2017, Biophysical journal.

[64]  Y. Aharonov,et al.  Classes of superoscillating functions , 2018 .

[65]  W H Lee,et al.  Binary computer-generated holograms. , 1979, Applied optics.

[66]  Nikolay I. Zheludev,et al.  Optical super-resolution through super-oscillations , 2007 .

[67]  Xiaoliang Ma,et al.  Revisitation of Extraordinary Young’s Interference: from Catenary Optical Fields to Spin–Orbit Interaction in Metasurfaces , 2018, ACS Photonics.

[68]  M. Berry,et al.  Dislocations in wave trains , 1974, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[69]  A. Aiello Goos–Hänchen and Imbert–Fedorov shifts: a novel perspective , 2012 .

[70]  Nikolay I. Zheludev,et al.  Super-oscillatory optical needle , 2013 .

[71]  George V. Eleftheriades,et al.  Broadband superoscillation brings a wave into perfect three-dimensional focus , 2017 .

[72]  Qiwen Zhan,et al.  Three-dimensional focus shaping with cylindrical vector beams , 2006 .

[73]  Zhongquan Wen,et al.  Super-oscillation focusing lens based on continuous amplitude and binary phase modulation. , 2014, Optics express.

[74]  A. Bahabad,et al.  Super-transmission: the delivery of superoscillations through the absorbing resonance of a dielectric medium. , 2014, Optics express.

[75]  C. Imbert,et al.  Calculation and Experimental Proof of the Transverse Shift Induced by Total Internal Reflection of a Circularly Polarized Light Beam , 1972 .

[76]  Nikolay I. Zheludev,et al.  Optical super-oscillations: sub-wavelength light focusing and super-resolution imaging , 2013 .

[77]  Nikolay Zheludev,et al.  Focusing of light by a nanohole array , 2007 .

[78]  George V. Eleftheriades,et al.  An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit , 2013, Scientific Reports.

[79]  T. Ebbesen,et al.  Weak measurements of light chirality with a plasmonic slit. , 2012, Physical review letters.

[80]  S. Hell,et al.  Ground-state-depletion fluorscence microscopy: A concept for breaking the diffraction resolution limit , 1995 .

[81]  Moshe Schwartz,et al.  Yield statistics of interpolated superoscillations , 2015, 1507.07544.

[82]  Alon Bahabad,et al.  Super defocusing of light by optical sub-oscillations , 2017, 1701.04755.

[83]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[84]  Sahar Froim,et al.  Breaking the temporal resolution limit by superoscillating optical beats , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[85]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[86]  S. Schelkunoff A mathematical theory of linear arrays , 1943 .

[87]  Nikolay I. Zheludev,et al.  Planar super-oscillatory lens for sub-diffraction optical needles at violet wavelengths , 2014, Scientific Reports.

[88]  N. Zheludev,et al.  A novel 3D nanolens for sub-wavelength focusing by self-aligned nanolithography , 2010 .

[89]  Mark R. Dennis,et al.  Natural superoscillations in monochromatic waves in D dimensions , 2009 .

[90]  Xian-shu Luo Subwavelength Optical Engineering with Metasurface Waves , 2018 .

[91]  Sumeet Mahajan,et al.  Optimising superoscillatory spots for far-field super-resolution imaging. , 2018, Optics express.

[92]  A. Vinogradov,et al.  Abrupt Rabi oscillations in a superoscillating electric field. , 2013, Optics letters.

[93]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[94]  F. Goos,et al.  Ein neuer und fundamentaler Versuch zur Totalreflexion , 1947 .

[95]  F. Fedorov To the theory of total reflection , 2013 .

[96]  D. Struppa,et al.  Evolution of superoscillations for Schrödinger equation in a uniform magnetic field , 2017 .

[97]  J. Teng,et al.  Reconfigurable phase-change photomask for grayscale photolithography , 2017 .

[98]  Nikolay I Zheludev,et al.  Achromatic super-oscillatory lenses with sub-wavelength focusing , 2017, Light: Science & Applications.

[99]  D. C. Struppa,et al.  The mathematics of superoscillations , 2015, 1511.01938.

[100]  G Leuchs,et al.  Sharper focus for a radially polarized light beam. , 2003, Physical review letters.

[101]  J. Teng,et al.  Optically reconfigurable metasurfaces and photonic devices based on phase change materials , 2015, Nature Photonics.

[102]  A. Arie,et al.  Superoscillating electron wave functions with subdiffraction spots , 2016, 1604.05929.

[103]  Daniele C. Struppa,et al.  Some mathematical properties of superoscillations , 2011 .

[104]  Mark R. Dennis,et al.  The analogy between optical beam shifts and quantum weak measurements , 2012, 1204.0327.

[105]  D. Slepian,et al.  Prolate spheroidal wave functions, fourier analysis and uncertainty — II , 1961 .

[106]  Xiaoliang Ma,et al.  Catenary optics for achromatic generation of perfect optical angular momentum , 2015, Science Advances.

[107]  Achim Kempf,et al.  Driving quantum systems with superoscillations , 2015, Journal of Mathematical Physics.

[108]  J. P. Woerdman,et al.  How orbital angular momentum affects beam shifts in optical reflection , 2010, 1003.0885.

[109]  Paulo Jorge S. G. Ferreira,et al.  The energy expense of superoscillations , 2002, 2002 11th European Signal Processing Conference.

[110]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[111]  M. Dennis,et al.  Beam shifts for pairs of plane waves , 2013 .

[112]  M. Dennis,et al.  Topological aberration of optical vortex beams: determining dielectric interfaces by optical singularity shifts. , 2012, Physical review letters.

[113]  Nikolay I Zheludev,et al.  What diffraction limit? , 2008, Nature materials.

[114]  Mark R. Dennis,et al.  Superoscillation in speckle patterns. , 2008, Optics letters.

[115]  Jinghua Teng,et al.  A Supercritical Lens Optical Label‐Free Microscopy: Sub‐Diffraction Resolution and Ultra‐Long Working Distance , 2017, Advanced materials.