Structural and enzymatic characterization of bacterial cell wall enzymes: Focus on penicillin-binding proteins

The research presented in this dissertation was aimed at understanding several structural and biochemical features underlying the bacterial cell wall biosynthetic process using statistical, biochemical and analytical tools. Penicillin-binding proteins (PBPs) are ubiquitous and essential enzymes necessary for cell wall biosynthesis. PBPs are broadly classified as low molecular mass (LMM) and high molecular mass (HMM) based on their molecular weight. Although all PBPs share a set of highly conserved active site residues, different PBPs have different propensities for catalyzing reactions. To understand the structural differences among PBPs, a global catalytic residue comparison was performed for all the PBPs available in the protein data bank. This dataset was analyzed using univariate and multivariate statistical methods, revealing several interesting relationships such as: (1) Distribution of the dihedral angle for the SXXK-motif Lys side chain was bimodal, and strongly correlated with HMM/transpeptidase vs LMM/hydrolase activity; (2) Distance between the SXXK-motif Lys-NZ atom and the Lys/His-nitrogen atom of the (K/H)T(S)G-motif was highly conserved.

[1]  M. Yeaman,et al.  Peptide antimicrobials: cell wall as a bacterial target , 2013, Annals of the New York Academy of Sciences.

[2]  S. Mobashery,et al.  Bacterial cell‐wall recycling , 2013, Annals of the New York Academy of Sciences.

[3]  Gerard D. Wright,et al.  Glycopeptide Sulfation Evades Resistance , 2012, Journal of bacteriology.

[4]  Erin E. Carlson,et al.  Selective penicillin-binding protein imaging probes reveal substructure in bacterial cell division. , 2012, ACS chemical biology.

[5]  C. G. Mohan,et al.  Homology modeling, molecular dynamics and inhibitor binding study on MurD ligase of Mycobacterium tuberculosis , 2012, Interdisciplinary Sciences: Computational Life Sciences.

[6]  W. Gutheil,et al.  A liquid chromatography-tandem mass spectrometry assay for detection and quantitation of the dipeptide Gly-Gln in rat brain. , 2012, Analytical biochemistry.

[7]  R. Hakenbeck,et al.  Mutations in Streptococcus pneumoniae penicillin-binding protein 2x: importance of the C-terminal penicillin-binding protein and serine/threonine kinase-associated domains for beta-lactam binding. , 2012, Microbial drug resistance.

[8]  P. Lacor,et al.  COMMUNITY ASSOCIATED METHICILLINRESISTANT STAPHYLOCOCCUS AUREUS , 2012, Acta clinica Belgica.

[9]  R. Pratt,et al.  Inhibition of bacterial DD-peptidases (penicillin-binding proteins) in membranes and in vivo by peptidoglycan-mimetic boronic acids. , 2012, Biochemistry.

[10]  G. Klebe,et al.  Virtual screening for potential inhibitors of bacterial MurC and MurD ligases , 2012, Journal of Molecular Modeling.

[11]  H. Schweizer,et al.  Characterization of d‐boroAla as a Novel Broad‐Spectrum Antibacterial Agent Targeting d‐Ala‐d‐Ala Ligase , 2011, Chemical biology & drug design.

[12]  W. Gutheil,et al.  Multivariate geometrical analysis of catalytic residues in the penicillin-binding proteins. , 2011, The international journal of biochemistry & cell biology.

[13]  A. Luxen,et al.  Unexpected tricovalent binding mode of boronic acids within the active site of a penicillin-binding protein. , 2011, Journal of the American Chemical Society.

[14]  C. Contreras-Martel,et al.  Structure-based design of a new series of D-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). , 2011, Journal of medicinal chemistry.

[15]  M. Mukherji,et al.  Microtiter Plate-Based Assay for Inhibitors of Penicillin-Binding Protein 2a from Methicillin-Resistant Staphylococcus aureus , 2011, Antimicrobial Agents and Chemotherapy.

[16]  F. Malouin,et al.  Binding of ceftaroline to penicillin-binding proteins of Staphylococcus aureus and Streptococcus pneumoniae. , 2010, The Journal of antimicrobial chemotherapy.

[17]  W. Millington,et al.  Glycyl-glutamine (β-endorphin30-31) inhibits morphine-induced dopamine efflux in the nucleus accumbens , 2010, Naunyn-Schmiedeberg's Archives of Pharmacology.

[18]  Thomas B. Clarke,et al.  Crystal structures of penicillin-binding proteins 4 and 5 from Haemophilus influenzae. , 2010, Journal of molecular biology.

[19]  Naoko Chiba,et al.  Diverse mutations in the ftsI gene in ampicillin-resistant Haemophilus influenzae isolates from pediatric patients with acute otitis media , 2010, Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy.

[20]  J. Bazan,et al.  Newer beta-lactam antibiotics: doripenem, ceftobiprole, ceftaroline, and cefepime. , 2009, Infectious disease clinics of North America.

[21]  A. Luxen,et al.  Structural basis of the inhibition of class A beta-lactamases and penicillin-binding proteins by 6-beta-iodopenicillanate. , 2009, Journal of the American Chemical Society.

[22]  Varun Sood,et al.  Molecular Basis for the Role of Staphylococcus aureus Penicillin Binding Protein 4 in Antimicrobial Resistance , 2009, Journal of bacteriology.

[23]  Christopher T. Walsh,et al.  Antibiotics for Emerging Pathogens , 2009, Science.

[24]  K. Bush,et al.  MurF Inhibitors with Antibacterial Activity: Effect on Muropeptide Levels , 2009, Antimicrobial Agents and Chemotherapy.

[25]  R. Nicholas,et al.  Neisseria gonorrhoeae penicillin-binding protein 3 demonstrates a pronounced preference for N(epsilon)-acylated substrates. , 2009, Biochemistry.

[26]  Chi‐Huey Wong,et al.  Crystal structure of the membrane-bound bifunctional transglycosylase PBP1b from Escherichia coli , 2009, Proceedings of the National Academy of Sciences.

[27]  S. Mobashery,et al.  Molecular Basis and Phenotype of Methicillin Resistance in Staphylococcus aureus and Insights into New β-Lactams That Meet the Challenge , 2009, Antimicrobial Agents and Chemotherapy.

[28]  M. Rybak,et al.  Ceftobiprole: First Cephalosporin with Activity Against Methicillin‐Resistant Staphylococcus aureus , 2009, Pharmacotherapy.

[29]  R. H. Baltz Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. , 2009, Current opinion in chemical biology.

[30]  Thomas B. Clarke,et al.  Mutational analysis of the substrate specificity of Escherichia coli penicillin binding protein 4. , 2009, Biochemistry.

[31]  T. Umland,et al.  Penicillin-binding protein 7/8 contributes to the survival of Acinetobacter baumannii in vitro and in vivo. , 2009, The Journal of infectious diseases.

[32]  Ashley M Deacon,et al.  Crystal Structures of Penicillin-binding Protein 2 from Penicillin-susceptible and -resistant Strains of Neisseria gonorrhoeae Reveal an Unexpectedly Subtle Mechanism for Antibiotic Resistance* , 2009, Journal of Biological Chemistry.

[33]  A. Tomasz,et al.  Reconstruction of the Phenotypes of Methicillin-Resistant Staphylococcus aureus by Replacement of the Staphylococcal Cassette Chromosome mec with a Plasmid-Borne Copy of Staphylococcus sciuri pbpD Gene , 2008, Antimicrobial Agents and Chemotherapy.

[34]  N. Strynadka,et al.  Identification of dynamic structural motifs involved in peptidoglycan glycosyltransfer. , 2008, Journal of molecular biology.

[35]  K. Bush,et al.  New agents in development for the treatment of bacterial infections. , 2008, Current opinion in pharmacology.

[36]  W. Vollmer,et al.  Murein (peptidoglycan) structure, architecture and biosynthesis in Escherichia coli. , 2008, Biochimica et biophysica acta.

[37]  Gary Taubes,et al.  The Bacteria Fight Back , 2008, Science.

[38]  D. Nelson,et al.  Physiological functions of D-alanine carboxypeptidases in Escherichia coli. , 2008, Trends in microbiology.

[39]  Ronald N. Jones,et al.  Pharmacokinetic and pharmacodynamic profile of ceftobiprole. , 2008, Diagnostic microbiology and infectious disease.

[40]  R. Pratt,et al.  Substrate specificity of bacterial DD-peptidases (penicillin-binding proteins) , 2008, Cellular and Molecular Life Sciences.

[41]  S. Gomi,et al.  Crystal Structures of Biapenem and Tebipenem Complexed with Penicillin-Binding Proteins 2X and 1A from Streptococcus pneumoniae , 2008, Antimicrobial Agents and Chemotherapy.

[42]  J. Martínez,et al.  Antibiotics as signals that trigger specific bacterial responses. , 2008, Current opinion in microbiology.

[43]  T. Bugg,et al.  Evolution of peptidoglycan biosynthesis under the selective pressure of antibiotics in Gram-positive bacteria. , 2008, FEMS microbiology reviews.

[44]  C. W. Simpson,et al.  Cyclo-glycyl-glutamine inhibits ethanol intake in P and Sprague–Dawley rats , 2008, Peptides.

[45]  C. W. Simpson,et al.  Glycyl-glutamine reduces ethanol intake at three reward sites in P rats. , 2008, Alcohol.

[46]  Paulette Charlier,et al.  The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. , 2008, FEMS microbiology reviews.

[47]  K. Bush,et al.  A MurF Inhibitor That Disrupts Cell Wall Biosynthesis in Escherichia coli , 2007, Antimicrobial Agents and Chemotherapy.

[48]  P. Appelbaum Reduced glycopeptide susceptibility in methicillin-resistant Staphylococcus aureus (MRSA). , 2007, International journal of antimicrobial agents.

[49]  Atlanta,et al.  Invasive Methicillin-Resistant Staphylococcus aureus Infections in the United States , 2007 .

[50]  Mototsugu Yamada,et al.  Crystal Structure of Cefditoren Complexed with Streptococcus pneumoniae Penicillin-Binding Protein 2X: Structural Basis for Its High Antimicrobial Activity , 2007, Antimicrobial Agents and Chemotherapy.

[51]  J. Frère,et al.  Crystal structure of the Bacillus subtilis penicillin-binding protein 4a, and its complex with a peptidoglycan mimetic peptide. , 2007, Journal of molecular biology.

[52]  S. Meroueh,et al.  Catalytic mechanism of penicillin-binding protein 5 of Escherichia coli. , 2007, Biochemistry.

[53]  A. Luxen,et al.  Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins , 2007, Nature Chemical Biology.

[54]  M. Page,et al.  Binding of Ceftobiprole and Comparators to the Penicillin-Binding Proteins of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae , 2007, Antimicrobial Agents and Chemotherapy.

[55]  Daniel Lim,et al.  Structural Insight into the Transglycosylation Step of Bacterial Cell-Wall Biosynthesis , 2007, Science.

[56]  R. Jha,et al.  Microplate Assay for Inhibitors of the Transpeptidase Activity of PBP1b of Escherichia coli , 2006, Journal of biomolecular screening.

[57]  Christian D. Klein,et al.  Molecular modeling and bioinformatical analysis of the antibacterial target enzyme MurA from a drug design perspective , 2006, J. Comput. Aided Mol. Des..

[58]  Clyde A. Smith Structure, function and dynamics in the mur family of bacterial cell wall ligases. , 2006, Journal of molecular biology.

[59]  E. Breukink,et al.  In Vitro Synthesis of Cross-linked Murein and Its Attachment to Sacculi by PBP1A from Escherichia coli* , 2006, Journal of Biological Chemistry.

[60]  Waldemar Vollmer,et al.  Interaction between two murein (peptidoglycan) synthases, PBP3 and PBP1B, in Escherichia coli , 2006, Molecular microbiology.

[61]  D. Rudner,et al.  Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  S. Mobashery,et al.  Mechanistic Basis for the Action of New Cephalosporin Antibiotics Effective against Methicillin- and Vancomycin-resistant Staphylococcus aureus* , 2006, Journal of Biological Chemistry.

[63]  J. Tame,et al.  Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. , 2006, Biochemistry.

[64]  W. Millington,et al.  Glycyl-glutamine inhibits nicotine conditioned place preference and withdrawal. , 2006, European journal of pharmacology.

[65]  M. G. Pinho,et al.  Bacterial Cell Wall Synthesis: New Insights from Localization Studies , 2005, Microbiology and Molecular Biology Reviews.

[66]  G. Nicola,et al.  A large displacement of the SXN motif of Cys115-modified penicillin-binding protein 5 from Escherichia coli. , 2005, The Biochemical journal.

[67]  Waldemar Vollmer,et al.  In Vitro Murein (Peptidoglycan) Synthesis by Dimers of the Bifunctional Transglycosylase-Transpeptidase PBP1B from Escherichia coli* , 2005, Journal of Biological Chemistry.

[68]  W. Millington,et al.  Glycyl-Glutamine, an Endogenous β-Endorphin-Derived Peptide, Inhibits Morphine-Induced Conditioned Place Preference, Tolerance, Dependence, and Withdrawal , 2005, Journal of Pharmacology and Experimental Therapeutics.

[69]  J. Frère,et al.  Specificity and reversibility of the transpeptidation reaction catalyzed by the Streptomyces R61 D‐Ala‐D‐Ala peptidase , 2005, Protein science : a publication of the Protein Society.

[70]  W. Millington,et al.  Glycyl-glutamine in nucleus accumbens reduces ethanol intake in alcohol preferring (P) rats , 2005, Brain Research.

[71]  J. Frère,et al.  Crystal Structure of the Actinomadura R39 DD-peptidase Reveals New Domains in Penicillin-binding Proteins* , 2005, Journal of Biological Chemistry.

[72]  D. Mengin-Lecreulx,et al.  Peptidoglycan precursor pools associated with MraY and FtsW deficiencies or antibiotic treatments. , 2005, FEMS microbiology letters.

[73]  G. Nicola,et al.  Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. , 2005, Biochemistry.

[74]  Nicholas R Silvaggi,et al.  Crystal structures of complexes between the R61 DD-peptidase and peptidoglycan-mimetic beta-lactams: a non-covalent complex with a "perfect penicillin". , 2005, Journal of molecular biology.

[75]  K. Young,et al.  Endopeptidase Penicillin-Binding Proteins 4 and 7 Play Auxiliary Roles in Determining Uniform Morphology of Escherichia coli , 2004, Journal of bacteriology.

[76]  H. Brückner,et al.  Marfey’s reagent for chiral amino acid analysis: A review , 2004, Amino Acids.

[77]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[78]  N. Silvaggi,et al.  Toward better antibiotics: crystallographic studies of a novel class of DD-peptidase/beta-lactamase inhibitors. , 2004, Biochemistry.

[79]  T. Vernet,et al.  The d,d‐carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae , 2004, Molecular microbiology.

[80]  H. Chambers,et al.  PBP 2a Mutations Producing Very-High-Level Resistance to Beta-Lactams , 2004, Antimicrobial Agents and Chemotherapy.

[81]  C. Davies,et al.  Overexpression and enzymatic characterization of Neisseria gonorrhoeae penicillin-binding protein 4. , 2003, European journal of biochemistry.

[82]  J. Barrett,et al.  Antibacterials: are the new entries enough to deal with the emerging resistance problems? , 2003, Current opinion in biotechnology.

[83]  D. Popham,et al.  Role of penicillin-binding proteins in bacterial cell morphogenesis. , 2003, Current opinion in microbiology.

[84]  R. Nicholas,et al.  Neisseria gonorrhoeae penicillin-binding protein 3 exhibits exceptionally high carboxypeptidase and beta-lactam binding activities. , 2003, Biochemistry.

[85]  J. Errington,et al.  Control of Cell Morphogenesis in Bacteria Two Distinct Ways to Make a Rod-Shaped Cell , 2003, Cell.

[86]  F. Lowy Antimicrobial resistance: the example of Staphylococcus aureus. , 2003, The Journal of clinical investigation.

[87]  K. Young,et al.  Sequences near the Active Site in Chimeric Penicillin Binding Proteins 5 and 6 Affect Uniform Morphology of Escherichia coli , 2003, Journal of bacteriology.

[88]  J. Frère,et al.  Catalytic mechanism of the Streptomyces K15 DD-transpeptidase/penicillin-binding protein probed by site-directed mutagenesis and structural analysis. , 2003, Biochemistry.

[89]  N. Silvaggi,et al.  The crystal structure of phosphonate-inhibited D-Ala-D-Ala peptidase reveals an analogue of a tetrahedral transition state. , 2003, Biochemistry.

[90]  R. Nicholas,et al.  Potential transition state analogue inhibitors for the penicillin-binding proteins. , 2003, Biochemistry.

[91]  R. Levesque,et al.  Structure and function of the Mur enzymes: development of novel inhibitors , 2002, Molecular microbiology.

[92]  J. Ghuysen,et al.  Biochemistry and Comparative Genomics of SxxK Superfamily Acyltransferases Offer a Clue to the Mycobacterial Paradox: Presence of Penicillin-Susceptible Target Proteins versus Lack of Efficiency of Penicillin as Therapeutic Agent , 2002, Microbiology and Molecular Biology Reviews.

[93]  N. Silvaggi,et al.  Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. , 2002, Journal of molecular biology.

[94]  D. Bamberger,et al.  Effects of Neutrophils on Cefazolin Activity and Penicillin-Binding Proteins in Staphylococcus aureus Abscesses , 2002, Antimicrobial Agents and Chemotherapy.

[95]  K. Young,et al.  Contribution of Membrane-Binding and Enzymatic Domains of Penicillin Binding Protein 5 to Maintenance of Uniform Cellular Morphology of Escherichia coli , 2002, Journal of bacteriology.

[96]  C. Davies,et al.  pH, inhibitor, and substrate specificity studies on Escherichia coli penicillin-binding protein 5. , 2002, Biochimica et biophysica acta.

[97]  P. Moreillon,et al.  BAL9141, a Novel Extended-Spectrum Cephalosporin Active against Methicillin-Resistant Staphylococcus aureus in Treatment of Experimental Endocarditis , 2002, Antimicrobial Agents and Chemotherapy.

[98]  B. Thomas,et al.  Kinetic and mechanistic studies of penicillin-binding protein 2x from Streptococcus pneumoniae. , 2001, Biochemistry.

[99]  O. Dideberg,et al.  Crystal Structure of PBP2x from a Highly Penicillin-resistant Streptococcus pneumoniae Clinical Isolate , 2001, The Journal of Biological Chemistry.

[100]  J. Markwalder,et al.  Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli. , 2001, Journal of the American Chemical Society.

[101]  K. Bush,et al.  Identification and Characterization of New Inhibitors of the Escherichia coli MurA Enzyme , 2001, Antimicrobial Agents and Chemotherapy.

[102]  K. Young,et al.  Contributions of PBP 5 anddd-Carboxypeptidase Penicillin Binding Proteins to Maintenance of Cell Shape in Escherichia coli , 2001, Journal of bacteriology.

[103]  S. Walker,et al.  Better substrates for bacterial transglycosylases. , 2001, Journal of the American Chemical Society.

[104]  T. Balganesh,et al.  Novel Scintillation Proximity Assay for Measuring Membrane-Associated Steps of Peptidoglycan Biosynthesis inEscherichia coli , 2001, Antimicrobial Agents and Chemotherapy.

[105]  Z. H. Li,et al.  A 1.2-A snapshot of the final step of bacterial cell wall biosynthesis. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[106]  S. White,et al.  Crystal Structure of a Deacylation-defective Mutant of Penicillin-binding Protein 5 at 2.3-Å Resolution* , 2001, The Journal of Biological Chemistry.

[107]  R. Nicholas,et al.  Fluorescent coupled enzyme assays for D-alanine: application to penicillin-binding protein and vancomycin activity assays. , 2000, Analytical biochemistry.

[108]  J. Anderson,et al.  Dipeptide binding to the extended active site of the Streptomyces R61 D-alanyl-D-alanine-peptidase: the path to a specific substrate. , 2000, Biochemistry.

[109]  O. Dideberg,et al.  The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. , 2000, Journal of molecular biology.

[110]  H. T. Ho,et al.  4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. , 2000, Bioorganic & medicinal chemistry letters.

[111]  K. Young,et al.  Penicillin Binding Protein 5 Affects Cell Diameter, Contour, and Morphology of Escherichia coli , 2000, Journal of bacteriology.

[112]  J. Höltje,et al.  Cloning and Characterization of PBP 1C, a Third Member of the Multimodular Class A Penicillin-binding Proteins of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[113]  N. Schiller,et al.  Competition of Various β-Lactam Antibiotics for the Major Penicillin-Binding Proteins of Helicobacter pylori: Antibacterial Activity and Effects on Bacterial Morphology , 1999, Antimicrobial Agents and Chemotherapy.

[114]  J. Ghuysen,et al.  The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan‐polymerizing penicillin‐binding protein 1b of Escherichia coli , 1999, Molecular microbiology.

[115]  R. Brasseur,et al.  The Crystal Structure of a Penicilloyl-serine Transferase of Intermediate Penicillin Sensitivity , 1999, The Journal of Biological Chemistry.

[116]  K. Young,et al.  Escherichia coli Mutants Lacking All Possible Combinations of Eight Penicillin Binding Proteins: Viability, Characteristics, and Implications for Peptidoglycan Synthesis , 1999, Journal of bacteriology.

[117]  S. D. Kahl,et al.  BOCILLIN FL, a Sensitive and Commercially Available Reagent for Detection of Penicillin-Binding Proteins , 1999, Antimicrobial Agents and Chemotherapy.

[118]  Y. Sun,et al.  Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with beta-lactams using electrospray mass spectrometry. , 1999, Biochemistry.

[119]  Kenny K. Wong,et al.  A Phosphinate Inhibitor of the meso-Diaminopimelic Acid-Adding Enzyme (MurE) of Peptidoglycan Biosynthesis , 1998 .

[120]  J. Ghuysen,et al.  Multimodular Penicillin-Binding Proteins: An Enigmatic Family of Orthologs and Paralogs , 1998, Microbiology and Molecular Biology Reviews.

[121]  W. Millington,et al.  Glycyl-L-glutamine injected centrally suppresses alcohol drinking in P rats. , 1998, Alcohol.

[122]  Kenny K. Wong,et al.  Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. , 1998, Bioorganic & medicinal chemistry letters.

[123]  R. Pratt,et al.  Reaction of soluble penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus with beta-lactams and acyclic substrates: kinetics in homogeneous solution. , 1998, The Biochemical journal.

[124]  I. Massova,et al.  Kinship and Diversification of Bacterial Penicillin-Binding Proteins and β-Lactamases , 1998, Antimicrobial Agents and Chemotherapy.

[125]  J. Frère,et al.  Site-directed mutagenesis of the Actinomadura R39 DD-peptidase. , 1997, The Biochemical journal.

[126]  J. Frère,et al.  The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from the lipid II intermediate , 1997, Journal of bacteriology.

[127]  D. Bryant,et al.  Presence of UDP-N-acetylmuramyl-hexapeptides and -heptapeptides in enterococci and staphylococci after treatment with ramoplanin, tunicamycin, or vancomycin , 1997, Journal of bacteriology.

[128]  P. A. Ropp,et al.  Cloning and characterization of the ponA gene encoding penicillin-binding protein 1 from Neisseria gonorrhoeae and Neisseria meningitidis , 1997, Journal of bacteriology.

[129]  J. Villafranca,et al.  Kinetic and crystallographic studies of Escherichia coli UDP‐N‐acetylmuramate:L‐alanine ligase , 1996, Protein science : a publication of the Protein Society.

[130]  D. Blanot,et al.  Phosphinate Inhibitors of the D-Glutamic Acid-Adding Enzyme of Peptidoglycan Biosynthesis. , 1996, The Journal of organic chemistry.

[131]  A. Kuzin,et al.  The refined crystallographic structure of a DD-peptidase penicillin-target enzyme at 1.6 A resolution. , 1995, Journal of molecular biology.

[132]  A. Kuzin,et al.  Binding of cephalothin and cefotaxime to D-ala-D-ala-peptidase reveals a functional basis of a natural mutation in a low-affinity penicillin-binding protein and in extended-spectrum beta-lactamases. , 1995, Biochemistry.

[133]  J. Frère,et al.  Breakdown of the stereospecificity of DD-peptidases and beta-lactamases with thiolester substrates. , 1995, The Biochemical journal.

[134]  J. Heijenoort,et al.  Over-production, purification and properties of the uridine-diphosphate-N-acetylmuramate:L-alanine ligase from Escherichia coli. , 1995, European journal of biochemistry.

[135]  W. Millington,et al.  Beta-endorphin-induced cardiorespiratory depression is inhibited by glycyl-L-glutamine, a dipeptide derived from beta-endorphin processing. , 1994, The Journal of pharmacology and experimental therapeutics.

[136]  F. Malouin,et al.  Use of biotinylated beta-lactams and chemiluminescence for study and purification of penicillin-binding proteins in bacteria , 1994, Antimicrobial Agents and Chemotherapy.

[137]  M. P. van der Linden,et al.  Possible role of Escherichia coli penicillin-binding protein 6 in stabilization of stationary-phase peptidoglycan , 1992, Journal of bacteriology.

[138]  D. Mengin-Lecreulx,et al.  Peptidoglycan biosynthesis in Escherichia coli: variations in the metabolism of alanine and D-alanyl-D-alanine. , 1992, Journal of general microbiology.

[139]  L. Gutmann,et al.  Analysis of peptidoglycan precursors in vancomycin-resistant enterococci , 1992, Antimicrobial Agents and Chemotherapy.

[140]  R. Nicholas,et al.  Substitution of lysine 213 with arginine in penicillin-binding protein 5 of Escherichia coli abolishes D-alanine carboxypeptidase activity without affecting penicillin binding. , 1992, The Journal of biological chemistry.

[141]  J. Heijenoort,et al.  Membrane intermediates in the peptidoglycan metabolism of Escherichia coli: possible roles of PBP 1b and PBP 3 , 1992, Journal of bacteriology.

[142]  C. Walsh,et al.  Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin-resistant enterococci , 1992, Antimicrobial Agents and Chemotherapy.

[143]  G. Lajoie,et al.  Use of Marfey's reagent to quantitate racemization upon anchoring of amino acids to solid supports for peptide synthesis. , 1992, Analytical biochemistry.

[144]  B. Spratt,et al.  Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. , 1991, The Biochemical journal.

[145]  B. Spratt,et al.  Expression and purification of a soluble form of penicillin-binding protein 2 from both penicillin-susceptible and penicillin-resistant Neisseria gonorrhoeae. , 1991, Protein expression and purification.

[146]  J. Höltje,et al.  Analysis of murein and murein precursors during antibiotic-induced lysis of Escherichia coli , 1991, Journal of bacteriology.

[147]  D. Blanot,et al.  Effect of various alanine analogues on the L-alanine-adding enzyme from Escherichia coli. , 1991, FEMS microbiology letters.

[148]  W. Keck,et al.  Penicillin‐binding protein 4 of Escherichia coli: molecular cloning of the dacB gene, controlled overexpression, and alterations in murein composition , 1991, Molecular microbiology.

[149]  R. Hakenbeck,et al.  Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the D,D-carboxypeptidase penicillin-binding protein 3 , 1990, Journal of bacteriology.

[150]  J. Frère,et al.  Chromogenic depsipeptide substrates for beta-lactamases and penicillin-sensitive DD-peptidases. , 1990, The Biochemical journal.

[151]  L. Blaszczak,et al.  Biological characterization of a new radioactive labeling reagent for bacterial penicillin-binding proteins , 1990, Antimicrobial Agents and Chemotherapy.

[152]  N. Nanninga,et al.  Interaction of monoclonal antibodies with the enzymatic domains of penicillin-binding protein 1b of Escherichia coli , 1990, Journal of bacteriology.

[153]  K. Bush,et al.  Improved sensitivity in assays for binding of novel beta-lactam antibiotics to penicillin-binding proteins of Escherichia coli , 1987, Antimicrobial Agents and Chemotherapy.

[154]  J. Strominger,et al.  Identification of the active site in penicillin-binding protein 3 of Escherichia coli , 1985, Journal of bacteriology.

[155]  J. Heijenoort,et al.  Effect of growth conditions on peptidoglycan content and cytoplasmic steps of its biosynthesis in Escherichia coli , 1985, Journal of bacteriology.

[156]  S. Tamaki,et al.  Functional biosynthesis of cell wall peptidoglycan by polymorphic bifunctional polypeptides. Penicillin-binding protein 1Bs of Escherichia coli with activities of transglycosylase and transpeptidase. , 1984, The Journal of biological chemistry.

[157]  A. Tomasz,et al.  Low-affinity penicillin-binding protein associated with beta-lactam resistance in Staphylococcus aureus , 1984, Journal of bacteriology.

[158]  J. Strominger,et al.  Purification and properties of penicillin-binding proteins 5 and 6 from the dacA mutant strain of Escherichia coli (JE 11191). , 1984, The Journal of biological chemistry.

[159]  J. Heijenoort,et al.  Pool levels of UDP N-acetylglucosamine and UDP N-acetylglucosamine-enolpyruvate in Escherichia coli and correlation with peptidoglycan synthesis , 1983, Journal of bacteriology.

[160]  J. Heijenoort,et al.  Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli , 1982, Journal of bacteriology.

[161]  D. P. Fan,et al.  Purification of the peptidoglycan transglycosylase of Bacillus megaterium. , 1982, The Journal of biological chemistry.

[162]  J. Heijenoort,et al.  Reverse-phase high-pressure liquid chromatography of uridine diphosphate N-acetylmuramyl peptide precursors of bacterial cell wall peptidoglycan. , 1981, Analytical biochemistry.

[163]  T. Tamura,et al.  On the process of cellular division in Escherichia coli: isolation and characterization of penicillin-binding proteins 1a, 1b, and 3. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[164]  J. Knowles,et al.  beta-Lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. , 1980, Biochemistry.

[165]  J. Strominger,et al.  Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[166]  T. Tamura,et al.  In vitro peptidoglycan polymerization catalysed by penicillin binding protein 1b of Escherichia coli K‐12 , 1980, FEBS letters.

[167]  J. Strominger,et al.  Mutational evidence for identity of penicillin-binding protein 5 in Escherichia coli with the major D-alanine carboxypeptidase IA activity , 1979, Journal of bacteriology.

[168]  E. Ishiguro,et al.  Involvement of the relA gene product and feedback inhibition in the regulation of DUP-N-acetylmuramyl-peptide synthesis in Escherichia coli , 1978, Journal of bacteriology.

[169]  J. Strominger,et al.  A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. , 1978, The Journal of biological chemistry.

[170]  J. Strominger,et al.  Purification to homogeneity and properties of two D-alanine carboxypeptidases I From Escherichia coli. , 1976, The Journal of biological chemistry.

[171]  K. Schleifer,et al.  Peptidoglycan Types of Bacterial Cell Walls and Their Taxonomic Implications , 1973, Bacteriological reviews.

[172]  J. Frère,et al.  Streptomyces DD-carboxypeptidases as transpeptidases. The specificity for amino compounds acting as carboxyl acceptors. , 1973, The Biochemical journal.

[173]  J. Frère,et al.  Structure of the wall peptidoglycan of Streptomyces R39 and the specificity profile of its exocellular DD-carboxypeptidase--transpeptidase for peptide acceptors. , 1973, Biochemistry.

[174]  J. Frère,et al.  Penicillin-sensitive DD-carboxypeptidases from Streptomyces strains R39 and K11. , 1972, Biochemistry.

[175]  J. Ghuysen,et al.  Penicillin-sensitive DD-carboxypeptidase from Streptomyces strain R 61. , 1971, Biochemistry.

[176]  W. Gutheil,et al.  A microtiter plate-based beta-lactam binding assay for inhibitors of high-molecular-mass penicillin-binding proteins. , 2010, Analytical biochemistry.

[177]  W. Gutheil,et al.  A liquid chromatography-tandem mass spectrometry assay for Marfey's derivatives of L-Ala, D-Ala, and D-Ala-D-Ala: application to the in vivo confirmation of alanine racemase as the target of cycloserine in Escherichia coli. , 2010, Analytical biochemistry.

[178]  W. Gronwald,et al.  Advances in amino acid analysis , 2009, Analytical and bioanalytical chemistry.

[179]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[180]  Patrice Courvalin,et al.  Vancomycin resistance in gram-positive cocci. , 2006, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[181]  H.S. Jeong,et al.  Actinomadura hallensis sp. nov., a novel actinomycete isolated from Mt. Halla in Korea. , 2006, International journal of systematic and evolutionary microbiology.

[182]  P. Appelbaum MRSA--the tip of the iceberg. , 2006, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[183]  S. Mobashery,et al.  The basis for resistance to beta-lactam antibiotics by penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. , 2004, The Journal of biological chemistry.

[184]  Daniel Lim,et al.  Structural basis for the beta lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. , 2002, Nature structural biology.

[185]  J. van Heijenoort Formation of the glycan chains in the synthesis of bacterial peptidoglycan. , 2001, Glycobiology.

[186]  J. van Heijenoort Recent advances in the formation of the bacterial peptidoglycan monomer unit. , 2001, Natural product reports.

[187]  K. Young Approaching the physiological functions of penicillin-binding proteins in Escherichia coli. , 2001, Biochimie.

[188]  David J. Miller,et al.  Aminoalkylphosphinate inhibitors of D-Ala-D-Ala adding enzyme , 1998 .

[189]  B. Berger-Bächi,et al.  Effects of penicillin-binding protein 4 overproduction in Staphylococcus aureus. , 1996, Microbial drug resistance.

[190]  R. Wolfenden,et al.  Transition state and multisubstrate analog inhibitors. , 1995, Methods in enzymology.

[191]  B. Joris,et al.  Serine-type D-Ala-D-Ala peptidases and penicillin-binding proteins. , 1994, Methods in enzymology.

[192]  J. Ghuysen,et al.  Serine beta-lactamases and penicillin-binding proteins. , 1991, Annual review of microbiology.

[193]  D. Mengin-Lecreulx,et al.  Correlation between the effects of fosfomycin and chloramphenicol on Escherichia coli. , 1990, FEMS microbiology letters.

[194]  D. Smyth,et al.  Glycyl glutamine, an inhibitory neuropeptide derived from beta-endorphin. , 1983, Nature.

[195]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[196]  R. Sykes,et al.  Bacterial Enzymes Interacting with β-Lactam Antibiotics , 1983 .

[197]  D. Smyth,et al.  The C-terminal dipeptide of beta-endorphin: a neuropeptide with inhibitory activity. , 1983, Life sciences.

[198]  K. Tipton,et al.  Effects of pH on enzymes. , 1979, Methods in enzymology.

[199]  J. Frère,et al.  Use of model enzymes in the determination of the mode of action of penicillins and delta 3-cephalosporins. , 1979, Annual review of biochemistry.

[200]  B. Spratt Properties of the penicillin-binding proteins of Escherichia coli K12,. , 1977, European journal of biochemistry.