Chaotic antlion algorithm for parameter optimization of support vector machine

Support Vector Machine (SVM) is one of the well-known classifiers. SVM parameters such as kernel parameters and penalty parameter (C) significantly influence the classification accuracy. In this paper, a novel Chaotic Antlion Optimization (CALO) algorithm has been proposed to optimize the parameters of SVM classifier, so that the classification error can be reduced. To evaluate the proposed algorithm (CALO-SVM), the experiment adopted six standard datasets which are obtained from UCI machine learning data repository. For verification, the results of the CALO-SVM algorithm are compared with grid search, which is a conventional method of searching parameter values, standard Ant Lion Optimization (ALO) SVM, and three well-known optimization algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Social Emotional Optimization Algorithm (SEOA). The experimental results proved that the proposed algorithm is capable of finding the optimal values of the SVM parameters and avoids the local optima problem. The results also demonstrated lower classification error rates compared with GA, PSO, and SEOA algorithms.

[1]  A. Atiya,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2005, IEEE Transactions on Neural Networks.

[2]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[3]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[4]  Amir Hossein Gandomi,et al.  Chaotic Krill Herd algorithm , 2014, Inf. Sci..

[5]  Gunnar Rätsch,et al.  Support Vector Machines and Kernels for Computational Biology , 2008, PLoS Comput. Biol..

[6]  Crina Grosan,et al.  Feature Selection via Chaotic Antlion Optimization , 2016, PloS one.

[7]  Xin Zhou,et al.  MSVM-RFE: extensions of SVM-RFE for multiclass gene selection on DNA microarray data , 2007, Bioinform..

[8]  Christian Igel,et al.  Evolutionary tuning of multiple SVM parameters , 2005, ESANN.

[9]  Javier M. Moguerza,et al.  Methods for the combination of kernel matrices within a support vector framework , 2009, Machine Learning.

[10]  Aboul Ella Hassanien,et al.  A New Multi-layer Perceptrons Trainer Based on Ant Lion Optimization Algorithm , 2015, 2015 Fourth International Conference on Information Science and Industrial Applications (ISI).

[11]  Aboul Ella Hassanien,et al.  Binary ant lion approaches for feature selection , 2016, Neurocomputing.

[12]  Yunqiang Zhang,et al.  Machine training and parameter settings with social emotional optimization algorithm for support vector machine , 2015, Pattern Recognit. Lett..

[13]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[14]  Richa Singh,et al.  Improving biometric recognition accuracy and robustness using DWT and SVM watermarking , 2005, IEICE Electron. Express.

[15]  Weizhou Zhong,et al.  Multi-objective Optimization using Chaos Based PSO , 2011 .

[16]  RASHI VOHRA,et al.  AN EFFICIENT CHAOS-BASED OPTIMIZATION ALGORITHM APPROACH FOR CRYPTOGRAPHY , 2012 .

[17]  Yi Lin,et al.  Support Vector Machines for Classification in Nonstandard Situations , 2002, Machine Learning.

[18]  Yi Lin,et al.  Statistical Properties and Adaptive Tuning of Support Vector Machines , 2002, Machine Learning.

[19]  Benjamin Naumann,et al.  Learning And Soft Computing Support Vector Machines Neural Networks And Fuzzy Logic Models , 2016 .

[20]  Mingtian Zhou,et al.  Feature selection and parameter optimization for support vector machines: A new approach based on genetic algorithm with feature chromosomes , 2011, Expert Syst. Appl..

[21]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.

[22]  Cheng-Lung Huang,et al.  A GA-based feature selection and parameters optimizationfor support vector machines , 2006, Expert Syst. Appl..

[23]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[24]  A. Gandomi,et al.  Author ' s personal copy Chaotic Krill Herd algorithm , 2014 .

[25]  Abdulhamit Subasi,et al.  Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders , 2013, Comput. Biol. Medicine.

[26]  Chih-Hung Wu,et al.  A Novel hybrid genetic algorithm for kernel function and parameter optimization in support vector regression , 2009, Expert Syst. Appl..

[27]  Jean-Pierre Doucet,et al.  Nonlinear SVM Approaches to QSPR/QSAR Studies and Drug Design , 2007 .

[28]  David E. Goldberg,et al.  Genetic algorithms and Machine Learning , 1988, Machine Learning.

[29]  Jian Yang,et al.  Essence of kernel Fisher discriminant: KPCA plus LDA , 2004, Pattern Recognit..

[30]  Amir Hossein Gandomi,et al.  Chaotic bat algorithm , 2014, J. Comput. Sci..

[31]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[32]  Shih-Wei Lin,et al.  Particle swarm optimization for parameter determination and feature selection of support vector machines , 2008, Expert Syst. Appl..

[33]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[34]  Lipo Wang Support vector machines : theory and applications , 2005 .

[35]  Sayan Mukherjee,et al.  Choosing Multiple Parameters for Support Vector Machines , 2002, Machine Learning.

[36]  Kate Smith-Miles,et al.  Automatic parameter selection for polynomial kernel , 2003, Proceedings Fifth IEEE Workshop on Mobile Computing Systems and Applications.

[37]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[38]  Xiaoli Zhang,et al.  An ACO-based algorithm for parameter optimization of support vector machines , 2010, Expert Syst. Appl..