More past glories [temporal logic]

We continue in the same vein as O. Lichtenstein et al. (1985) in "The Glory of the Past", demonstrating the advantages of including past-time operators in using temporal logic in computer science. A normal form for temporal formulas, based on a simple combination of past formulas, is arrived at via syntactic rewrites and is shown to be a useful alternative to automata based temporal reasoning. The use of the normal form in providing a complete axiomatization for PCTL* (i.e. CTL* with past connectives) is sketched.

[1]  Alberto Zanardo,et al.  Branching-time logic with quantification over branches: The point of view of modal logic , 1996, Journal of Symbolic Logic.

[2]  E. Muller David,et al.  Alternating automata on infinite trees , 1987 .

[3]  Amir Pnueli,et al.  A complete proof systems for QPTL , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[4]  Igor Walukiewicz A Complete Deductive System for the-Calculus , 1995, LICS 1995.

[5]  Moshe Y. Vardi A temporal fixpoint calculus , 1988, POPL '88.

[6]  François Laroussinie,et al.  Specification in CTL+Past for Verification in CTL , 1999, Inf. Comput..

[7]  R. Thomason Combinations of Tense and Modality , 2002 .

[8]  Amir Pnueli,et al.  Is the Interesting Part of Process Logic Uninteresting? A Translation from PL to PDL , 1984, SIAM J. Comput..

[9]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[10]  D. Gabbay An Irreflexivity Lemma with Applications to Axiomatizations of Conditions on Tense Frames , 1981 .

[11]  D. Peled,et al.  Temporal Logic: Mathematical Foundations and Computational Aspects, Volume 1 , 1995 .

[12]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[13]  Roope Kaivola Axiomatising Extended Computation Tree Logic , 1996, CAAP.

[14]  Johan Anthory Willem Kamp,et al.  Tense logic and the theory of linear order , 1968 .

[15]  Saharon Shelah,et al.  On the temporal analysis of fairness , 1980, POPL '80.

[16]  Alberto Zanardo,et al.  Ockhamist Computational Logic: Past-Sensitive Necessitation in CTL , 1993, J. Log. Comput..

[17]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[18]  David E. Muller,et al.  Alternating Automata on Infinite Trees , 1987, Theor. Comput. Sci..

[19]  Moshe Y. Vardi Sometimes and Not Never Re-revisited: On Branching Versus Linear Time , 1998, CONCUR.

[20]  S. Safra On The Complexity of w-Automata , 1988 .

[21]  Moshe Y. Vardi An Automata-Theoretic Approach to Linear Temporal Logic , 1996, Banff Higher Order Workshop.

[22]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[23]  Igor Walukiewicz,et al.  A Complete Deductive System for the mu-Calculus , 1995 .

[24]  Amir Pnueli,et al.  The Glory of the Past , 1985, Logic of Programs.

[25]  Mark Reynolds,et al.  An axiomatization of full Computation Tree Logic , 2001, Journal of Symbolic Logic.

[26]  Satoru Miyano,et al.  Alternating Finite Automata on omega-Words , 1984, CAAP.

[27]  Philippe Schnoebelen,et al.  A Hierarchy of Temporal Logics with Past , 1995, Theor. Comput. Sci..

[28]  David E. Muller,et al.  Weak alternating automata give a simple explanation of why most temporal and dynamic logics are decidable in exponential time , 1988, [1988] Proceedings. Third Annual Information Symposium on Logic in Computer Science.

[29]  Robert McNaughton,et al.  Testing and Generating Infinite Sequences by a Finite Automaton , 1966, Inf. Control..