Flight and tunnel test results of the MDC mechanical jet noise suppressor nozzle

The flight and wind tunnel tests to determine the acoustic and performance effects of a mechanical jet noise suppressor nozzle mounted on a Viper engine of an HS-125 airplane are discussed. Flyover noise measurements were made with microphones mounted on top of a 137.5 m bridge tower. Seven nozzle configurations including two references nozzles, two suppressors, and three ejector inlets were tested. The suppressor nozzle of interest for an advanced supersonic transport, the suppressor/treated ejector, achieved a measured noise reduction of 14 EPNdB relative to a conventional conical reference nozzle at the highest pressure ratio tested (approximately 2.5). The unique engine nacelle, flight hardware, and nacelles from the HS-125 flight test program, combined with a simulated HS-125 fuselage were windtunnel tested. Both propulsion and acoustic data were recorded. Preliminary thrust data results from the wind tunnel tests are summarized and compared to other mechanical suppressor test results. The test results indicate that a noise reduction of at least 16 EPNdB would be possible for the suppressor/ejector nozzle scaled to typical AST engine size with a 5% thrust loss at a typical takeoff climb speed.