Multi-objective combinatorial optimization : concepts, exact algorithms, and metaheuristics

[1]  George Mavrotas,et al.  A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..

[2]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[3]  Matthias Ehrgott,et al.  Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..

[4]  A. Jaszkiewicz Multiple Objective Genetic Local Search Algorithm , 2001 .

[5]  Minghe Sun Applying Tabu search to multiple objective combinatorial optimization problems , 1997 .

[6]  C.A. Coello Coello,et al.  MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[7]  Murat Köksalan,et al.  An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs , 2010, Manag. Sci..

[8]  R. Prim Shortest connection networks and some generalizations , 1957 .

[9]  M. Ehrgott,et al.  Connectedness of efficient solutions in multiple criteria combinatorial optimization , 1997 .

[10]  Jyrki Wallenius,et al.  Evaluation of nondominated solution sets for k , 2006, Eur. J. Oper. Res..

[11]  J. Teghem,et al.  Solving Multi-Objective Knapsack Problem by a Branch-and-Bound Procedure , 1997 .

[12]  José Rui Figueira,et al.  Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems , 2007, Eur. J. Oper. Res..

[13]  Chandra R. Chegireddy,et al.  Algorithms for finding K-best perfect matchings , 1987, Discret. Appl. Math..

[14]  Matthias Ehrgott,et al.  A comparison of solution strategies for biobjective shortest path problems , 2009, Comput. Oper. Res..

[15]  George Mavrotas,et al.  Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..

[16]  Alireza Rahimi-Vahed,et al.  A multi-objective particle swarm for a flow shop scheduling problem , 2006, J. Comb. Optim..

[17]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[18]  P. S. Pulat,et al.  Bicriteria network flow problems: Integer case , 1993 .

[19]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[20]  Pierre Hansen,et al.  Bicriterion Path Problems , 1980 .

[21]  Anthony Przybylski,et al.  A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..

[22]  Matthias Ehrgott,et al.  A two-phase algorithm for the biobjective integer minimum cost flow problem , 2009, Comput. Oper. Res..

[23]  G. Kiziltan,et al.  An Algorithm for Multiobjective Zero-One Linear Programming , 1983 .

[24]  Jérémie Bourdon,et al.  Distribution of Solutions of Multi-objective Assignment Problem and Links with the Efficiency of Solving Methods. , 2007 .

[25]  Horst W. Hamacher,et al.  On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..

[26]  Richard Bellman,et al.  ON A ROUTING PROBLEM , 1958 .

[27]  Richard F. Hartl,et al.  Ant Colony Optimization in Multiobjective Portfolio Selection , 2001 .

[28]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[29]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[30]  Darwin Klingman,et al.  NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .

[31]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[32]  Marc Gravel,et al.  Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..

[33]  Jacques Teghem,et al.  Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..

[34]  Tomasz Radzik,et al.  Computing all efficient solutions of the biobjective minimum spanning tree problem , 2008, Comput. Oper. Res..

[35]  Francis Sourd,et al.  A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..

[36]  Anthony Przybylski,et al.  Two phase algorithms for the bi-objective assignment problem , 2008, Eur. J. Oper. Res..

[37]  X. Gandibleux,et al.  Approximative solution methods for multiobjective combinatorial optimization , 2004 .

[38]  Matthias Ehrgott,et al.  Constructing robust crew schedules with bicriteria optimization , 2002 .

[39]  Xavier Gandibleux,et al.  Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem , 2010, Eur. J. Oper. Res..

[40]  Matthias Ehrgott,et al.  A discussion of scalarization techniques for multiple objective integer programming , 2006, Ann. Oper. Res..

[41]  Jorge Pinho de Sousa,et al.  Using metaheuristics in multiobjective resource constrained project scheduling , 2000, Eur. J. Oper. Res..

[42]  F. Abdelaziz,et al.  A Hybrid Heuristic for Multiobjective Knapsack Problems , 1999 .

[43]  Daniel Merkle,et al.  Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.

[44]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[45]  Lars Relund Nielsen,et al.  The Bicriterion Multimodal Assignment Problem: Introduction, Analysis, and Experimental Results , 2008, INFORMS J. Comput..

[46]  Antonio Sedeño-Noda,et al.  An algorithm for the biobjective integer minimum cost flow problem , 2001, Comput. Oper. Res..

[47]  Thomas Stützle,et al.  On local optima in multiobjective combinatorial optimization problems , 2007, Ann. Oper. Res..

[48]  Karsten Weihe,et al.  On the cardinality of the Pareto set in bicriteria shortest path problems , 2006, Ann. Oper. Res..

[49]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[50]  Xavier Gandibleux,et al.  The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.

[51]  Xavier Gandibleux,et al.  Hybrid Metaheuristics for Multi-objective Combinatorial Optimization , 2008, Hybrid Metaheuristics.

[52]  Alice E. Smith,et al.  Solving the semi-desirable facility location problem using bi-objective particle swarm , 2007, Eur. J. Oper. Res..

[53]  Tomomi Matsui,et al.  Finding all minimum-cost perfect matchings in Bipartite graphs , 1992, Networks.

[54]  Arnaud Fréville,et al.  Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.

[55]  B. Malakooti,et al.  Feedforward artificial neural networks for solving discrete multiple criteria decision making problems , 1994 .

[56]  Matthias Ehrgott,et al.  Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..

[57]  Jürgen Teich,et al.  Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).

[58]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[59]  Andrzej Jaszkiewicz,et al.  Evaluation of Multiple Objective Metaheuristics , 2004, Metaheuristics for Multiobjective Optimisation.