Multi-objective combinatorial optimization : concepts, exact algorithms, and metaheuristics
暂无分享,去创建一个
[1] George Mavrotas,et al. A branch and bound algorithm for mixed zero-one multiple objective linear programming , 1998, Eur. J. Oper. Res..
[2] A. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .
[3] Matthias Ehrgott,et al. Bound sets for biobjective combinatorial optimization problems , 2007, Comput. Oper. Res..
[4] A. Jaszkiewicz. Multiple Objective Genetic Local Search Algorithm , 2001 .
[5] Minghe Sun. Applying Tabu search to multiple objective combinatorial optimization problems , 1997 .
[6] C.A. Coello Coello,et al. MOPSO: a proposal for multiple objective particle swarm optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).
[7] Murat Köksalan,et al. An Exact Algorithm for Finding Extreme Supported Nondominated Points of Multiobjective Mixed Integer Programs , 2010, Manag. Sci..
[8] R. Prim. Shortest connection networks and some generalizations , 1957 .
[9] M. Ehrgott,et al. Connectedness of efficient solutions in multiple criteria combinatorial optimization , 1997 .
[10] Jyrki Wallenius,et al. Evaluation of nondominated solution sets for k , 2006, Eur. J. Oper. Res..
[11] J. Teghem,et al. Solving Multi-Objective Knapsack Problem by a Branch-and-Bound Procedure , 1997 .
[12] José Rui Figueira,et al. Integrating partial optimization with scatter search for solving bi-criteria {0, 1}-knapsack problems , 2007, Eur. J. Oper. Res..
[13] Chandra R. Chegireddy,et al. Algorithms for finding K-best perfect matchings , 1987, Discret. Appl. Math..
[14] Matthias Ehrgott,et al. A comparison of solution strategies for biobjective shortest path problems , 2009, Comput. Oper. Res..
[15] George Mavrotas,et al. Multi-criteria branch and bound: A vector maximization algorithm for Mixed 0-1 Multiple Objective Linear Programming , 2005, Appl. Math. Comput..
[16] Alireza Rahimi-Vahed,et al. A multi-objective particle swarm for a flow shop scheduling problem , 2006, J. Comb. Optim..
[17] Gilbert Laporte,et al. Metaheuristics: A bibliography , 1996, Ann. Oper. Res..
[18] P. S. Pulat,et al. Bicriteria network flow problems: Integer case , 1993 .
[19] E. L. Ulungu,et al. MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .
[20] Pierre Hansen,et al. Bicriterion Path Problems , 1980 .
[21] Anthony Przybylski,et al. A two phase method for multi-objective integer programming and its application to the assignment problem with three objectives , 2010, Discret. Optim..
[22] Matthias Ehrgott,et al. A two-phase algorithm for the biobjective integer minimum cost flow problem , 2009, Comput. Oper. Res..
[23] G. Kiziltan,et al. An Algorithm for Multiobjective Zero-One Linear Programming , 1983 .
[24] Jérémie Bourdon,et al. Distribution of Solutions of Multi-objective Assignment Problem and Links with the Efficiency of Solving Methods. , 2007 .
[25] Horst W. Hamacher,et al. On spanning tree problems with multiple objectives , 1994, Ann. Oper. Res..
[26] Richard Bellman,et al. ON A ROUTING PROBLEM , 1958 .
[27] Richard F. Hartl,et al. Ant Colony Optimization in Multiobjective Portfolio Selection , 2001 .
[28] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[29] H. Kuhn. The Hungarian method for the assignment problem , 1955 .
[30] Darwin Klingman,et al. NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .
[31] Piotr Czyzżak,et al. Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .
[32] Marc Gravel,et al. Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic , 2002, Eur. J. Oper. Res..
[33] Jacques Teghem,et al. Two-phases Method and Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem , 1998, J. Glob. Optim..
[34] Tomasz Radzik,et al. Computing all efficient solutions of the biobjective minimum spanning tree problem , 2008, Comput. Oper. Res..
[35] Francis Sourd,et al. A Multiobjective Branch-and-Bound Framework: Application to the Biobjective Spanning Tree Problem , 2008, INFORMS J. Comput..
[36] Anthony Przybylski,et al. Two phase algorithms for the bi-objective assignment problem , 2008, Eur. J. Oper. Res..
[37] X. Gandibleux,et al. Approximative solution methods for multiobjective combinatorial optimization , 2004 .
[38] Matthias Ehrgott,et al. Constructing robust crew schedules with bicriteria optimization , 2002 .
[39] Xavier Gandibleux,et al. Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem , 2010, Eur. J. Oper. Res..
[40] Matthias Ehrgott,et al. A discussion of scalarization techniques for multiple objective integer programming , 2006, Ann. Oper. Res..
[41] Jorge Pinho de Sousa,et al. Using metaheuristics in multiobjective resource constrained project scheduling , 2000, Eur. J. Oper. Res..
[42] F. Abdelaziz,et al. A Hybrid Heuristic for Multiobjective Knapsack Problems , 1999 .
[43] Daniel Merkle,et al. Bi-Criterion Optimization with Multi Colony Ant Algorithms , 2001, EMO.
[44] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[45] Lars Relund Nielsen,et al. The Bicriterion Multimodal Assignment Problem: Introduction, Analysis, and Experimental Results , 2008, INFORMS J. Comput..
[46] Antonio Sedeño-Noda,et al. An algorithm for the biobjective integer minimum cost flow problem , 2001, Comput. Oper. Res..
[47] Thomas Stützle,et al. On local optima in multiobjective combinatorial optimization problems , 2007, Ann. Oper. Res..
[48] Karsten Weihe,et al. On the cardinality of the Pareto set in bicriteria shortest path problems , 2006, Ann. Oper. Res..
[49] Marco Laumanns,et al. Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..
[50] Xavier Gandibleux,et al. The Supported Solutions Used as a Genetic Information in a Population Heuristics , 2001, EMO.
[51] Xavier Gandibleux,et al. Hybrid Metaheuristics for Multi-objective Combinatorial Optimization , 2008, Hybrid Metaheuristics.
[52] Alice E. Smith,et al. Solving the semi-desirable facility location problem using bi-objective particle swarm , 2007, Eur. J. Oper. Res..
[53] Tomomi Matsui,et al. Finding all minimum-cost perfect matchings in Bipartite graphs , 1992, Networks.
[54] Arnaud Fréville,et al. Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.
[55] B. Malakooti,et al. Feedforward artificial neural networks for solving discrete multiple criteria decision making problems , 1994 .
[56] Matthias Ehrgott,et al. Computation of ideal and Nadir values and implications for their use in MCDM methods , 2003, Eur. J. Oper. Res..
[57] Jürgen Teich,et al. Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO) , 2003, Proceedings of the 2003 IEEE Swarm Intelligence Symposium. SIS'03 (Cat. No.03EX706).
[58] Paolo Serafini,et al. Simulated Annealing for Multi Objective Optimization Problems , 1994 .
[59] Andrzej Jaszkiewicz,et al. Evaluation of Multiple Objective Metaheuristics , 2004, Metaheuristics for Multiobjective Optimisation.