Low-frequency oscillations employ a general coding of the spatio-temporal similarity of dynamic faces

&NA; Brain networks use neural oscillations as information transfer mechanisms. Although the face perception network in occipitotemporal cortex is well‐studied, contributions of oscillations to face representation remain an open question. We tested for links between oscillatory responses that encode facial dimensions and the theoretical proposal that faces are encoded in similarity‐based “face spaces”. We quantified similarity‐based encoding of dynamic faces in magnetoencephalographic sensor‐level oscillatory power for identity, expression, physical and perceptual similarity of facial form and motion. Our data show that evoked responses manifest physical and perceptual form similarity that distinguishes facial identities. Low‐frequency induced oscillations (< 20 Hz) manifested more general similarity structure, which was not limited to identity, and spanned physical and perceived form and motion. A supplementary fMRI‐constrained source reconstruction implicated fusiform gyrus and V5 in this similarity‐based representation. These findings introduce a potential link between “face space” encoding and oscillatory network communication, which generates new hypotheses about the potential oscillation‐mediated mechanisms that might encode facial dimensions. HighlightsIdentity and expression of dynamic faces statistically relate to form perception.Only facial expression relates to motion perception.Neural rhythms < 20 Hz encode similarity related to form, motion and identity.Evoked responses encode mainly facial identity.The brain's oscillatory mechanisms employ similarity‐based codes for perception.

[1]  N. Kanwisher,et al.  Multivariate Patterns in Object-Selective Cortex Dissociate Perceptual and Physical Shape Similarity , 2008, PLoS biology.

[2]  Li Su,et al.  Spatiotemporal Searchlight Representational Similarity Analysis in EMEG Source Space , 2012, 2012 Second International Workshop on Pattern Recognition in NeuroImaging.

[3]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[4]  Carl Senior,et al.  Dynamic Facial Expressions Evoke Distinct Activation in the Face Perception Network: A Connectivity Analysis Study , 2012, Journal of Cognitive Neuroscience.

[5]  Karl J. Friston,et al.  Top-Down Control of Visual Responses to Fear by the Amygdala , 2013, The Journal of Neuroscience.

[6]  Takanori Kochiyama,et al.  Spatiotemporal neural network dynamics for the processing of dynamic facial expressions , 2015, Scientific Reports.

[7]  Richard Coppola,et al.  Convergent BOLD and Beta-Band Activity in Superior Temporal Sulcus and Frontolimbic Circuitry Underpins Human Emotion Cognition. , 2015, Cerebral cortex.

[8]  M. Herrmann,et al.  Emotions in motion: Dynamic compared to static facial expressions of disgust and happiness reveal more widespread emotion-specific activations , 2009, Brain Research.

[9]  Ning Liu,et al.  Dynamic and Static Facial Expressions Decoded from Motion-Sensitive Areas in the Macaque Monkey , 2012, The Journal of Neuroscience.

[10]  Keiji Tanaka,et al.  Object category structure in response patterns of neuronal population in monkey inferior temporal cortex. , 2007, Journal of neurophysiology.

[11]  Gavin Perry,et al.  Localizing evoked and induced responses to faces using magnetoencephalography , 2014, The European journal of neuroscience.

[12]  K. Zhang,et al.  Neuroprotective effect of grafting GDNF gene-modified neural stem cells on cerebral ischemia in rats , 2009, Brain Research.

[13]  Andreas K. Engel,et al.  Temporal binding and the neural correlates of consciousness , 2003 .

[14]  Blake W. Johnson,et al.  Neural processing of observed oro-facial movements reflects multiple action encoding strategies in the human brain , 2006, Brain Research.

[15]  A. Young,et al.  Understanding the recognition of facial identity and facial expression , 2005, Nature Reviews Neuroscience.

[16]  W. Singer,et al.  Progress in Biophysics and Molecular Biology , 1965 .

[17]  Jonathan B Freeman,et al.  Neural pattern similarity reveals the inherent intersection of social categories , 2016, Nature Neuroscience.

[18]  Stefan R. Schweinberger,et al.  Covert Recognition and the Neural System for Face Processing , 2003, Cortex.

[19]  Meng Yu,et al.  Face Detection and Tracking with 3D PGA CLM , 2010, VISAPP.

[20]  Jörn Diedrichsen,et al.  Reliability of dissimilarity measures for multi-voxel pattern analysis , 2016, NeuroImage.

[21]  Simon B Eickhoff,et al.  Brain regions involved in human movement perception: A quantitative voxel‐based meta‐analysis , 2012, Human brain mapping.

[22]  William A. P. Smith,et al.  Modelling the perceptual similarity of facial expressions from image statistics and neural responses , 2016, NeuroImage.

[23]  H. Bülthoff,et al.  What the Human Brain Likes About Facial Motion , 2012, Cerebral cortex.

[24]  Andrew D. Engell,et al.  Selective Attention Modulates Face-Specific Induced Gamma Oscillations Recorded from Ventral Occipitotemporal Cortex , 2010, The Journal of Neuroscience.

[25]  Lijun Yin,et al.  A high-resolution 3D dynamic facial expression database , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[26]  S. Hanslmayr,et al.  Oscillatory power decreases and long-term memory: the information via desynchronization hypothesis , 2012, Front. Hum. Neurosci..

[27]  E. Halgren,et al.  Face-selective spectral changes in the human fusiform gyrus , 1999, Clinical Neurophysiology.

[28]  Karl J. Friston,et al.  Topological inference for EEG and MEG , 2010, 1011.2901.

[29]  Karl J. Friston,et al.  Electromagnetic source reconstruction for group studies , 2008, NeuroImage.

[30]  S. Bentin,et al.  A magnetoencephalographic study of face processing: M170, gamma‐band oscillations and source localization , 2013, Human brain mapping.

[31]  Hubert Preissl,et al.  Source Reconstruction Accuracy of MEG and EEG Bayesian Inversion Approaches , 2012, PloS one.

[32]  Daniel D. Dilks,et al.  Differential selectivity for dynamic versus static information in face-selective cortical regions , 2011, NeuroImage.

[33]  M. Junghöfer,et al.  The Role of Gamma-Band Activity in the Representation of Faces: Reduced Activity in the Fusiform Face Area in Congenital Prosopagnosia , 2011, PloS one.

[34]  Catherine Tallon-Baudry,et al.  The many faces of the gamma band response to complex visual stimuli , 2005, NeuroImage.

[35]  Brigitte Rockstroh,et al.  Modulation of α Power and Functional Connectivity during Facial Affect Recognition , 2013, The Journal of Neuroscience.

[36]  Karl J. Friston,et al.  EEG and MEG Data Analysis in SPM8 , 2011, Comput. Intell. Neurosci..

[37]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[38]  Johan D. Carlin,et al.  A Head View-Invariant Representation of Gaze Direction in Anterior Superior Temporal Sulcus , 2011, Current Biology.

[39]  Alfonso Caramazza,et al.  The neural mechanisms for the recognition of face identity in humans , 2014, Front. Psychol..

[40]  Skyler T. Hawk,et al.  Moving faces, looking places: validation of the Amsterdam Dynamic Facial Expression Set (ADFES). , 2011, Emotion.

[41]  David P. Wipf,et al.  A unified Bayesian framework for MEG/EEG source imaging , 2009, NeuroImage.

[42]  Juan R. Vidal,et al.  Category-Specific Visual Responses: An Intracranial Study Comparing Gamma, Beta, Alpha, and ERP Response Selectivity , 2010, Front. Hum. Neurosci..

[43]  D. Plaut,et al.  Spatiotemporal dynamics of similarity-based neural representations of facial identity , 2016, Proceedings of the National Academy of Sciences.

[44]  Li Su,et al.  A Toolbox for Representational Similarity Analysis , 2014, PLoS Comput. Biol..

[45]  R. Vogels,et al.  Inferotemporal neurons represent low-dimensional configurations of parameterized shapes , 2001, Nature Neuroscience.

[46]  W. Singer,et al.  Temporal binding and the neural correlates of sensory awareness , 2001, Trends in Cognitive Sciences.

[47]  E. Basar,et al.  A review of brain oscillations in perception of faces and emotional pictures , 2014, Neuropsychologia.

[48]  P. Schyns,et al.  Cracking the Code of Oscillatory Activity , 2011, PLoS biology.

[49]  Galit Yovel,et al.  Two neural pathways of face processing: A critical evaluation of current models , 2015, Neuroscience & Biobehavioral Reviews.

[50]  J. Schultz,et al.  Natural facial motion enhances cortical responses to faces , 2009, Experimental Brain Research.

[51]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[52]  David M. Groppe,et al.  Exemplar selectivity reflects perceptual similarities in the human fusiform cortex. , 2014, Cerebral cortex.

[53]  Karl J. Friston,et al.  Canonical Microcircuits for Predictive Coding , 2012, Neuron.

[54]  Wolf Singer,et al.  Deficits in high- (>60 Hz) gamma-band oscillations during visual processing in schizophrenia , 2013, Front. Hum. Neurosci..

[55]  T. Valentine The Quarterly Journal of Experimental Psychology Section A: Human Experimental Psychology a Unified Account of the Effects of Distinctiveness, Inversion, and Race in Face Recognition , 2022 .

[56]  Karl J. Friston,et al.  Canonical Source Reconstruction for MEG , 2007, Comput. Intell. Neurosci..

[57]  S. Taulu,et al.  Presentation of electromagnetic multichannel data: The signal space separation method , 2005 .

[58]  A. Norcia,et al.  A Representational Similarity Analysis of the Dynamics of Object Processing Using Single-Trial EEG Classification , 2015, PloS one.

[59]  I. Fried,et al.  Neural “Ignition”: Enhanced Activation Linked to Perceptual Awareness in Human Ventral Stream Visual Cortex , 2009, Neuron.

[60]  G. Aguirre,et al.  Different spatial scales of shape similarity representation in lateral and ventral LOC. , 2009, Cerebral cortex.

[61]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Jingying Chen,et al.  Multi-Cue Facial Feature Detection and Tracking under Various Illuminations , 2010, Int. J. Robotics Autom..

[63]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[64]  Karl J. Friston,et al.  Applications of random field theory to electrophysiology , 2005, Neuroscience Letters.

[65]  Karl J. Friston,et al.  Modulation of Perception and Brain Activity by Predictable Trajectories of Facial Expressions , 2009, Cerebral cortex.

[66]  Jonathan Westley Peirce,et al.  Neuroinformatics Original Research Article Generating Stimuli for Neuroscience Using Psychopy , 2022 .

[67]  Hiroyuki Oya,et al.  Decoding Face Information in Time, Frequency and Space from Direct Intracranial Recordings of the Human Brain , 2008, PloS one.

[68]  H. P. Op de Beeck,et al.  Representations of Facial Identity Information in the Ventral Visual Stream Investigated with Multivoxel Pattern Analyses , 2013, The Journal of Neuroscience.

[69]  Takanori Kochiyama,et al.  Time course of gamma‐band oscillation associated with face processing in the inferior occipital gyrus and fusiform gyrus: A combined fMRI and MEG study , 2017, Human brain mapping.

[70]  S. Kiebel,et al.  An Introduction to Random Field Theory , 2003 .

[71]  Richard Coppola,et al.  Cross-frequency power coupling between hierarchically organized face-selective areas. , 2014, Cerebral cortex.

[72]  Christopher J. Fox,et al.  Defining the face processing network: Optimization of the functional localizer in fMRI , 2009, Human brain mapping.

[73]  Sonja A. Kotz,et al.  The Functional Role of Neural Oscillations in Non-Verbal Emotional Communication , 2016, Front. Hum. Neurosci..

[74]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[75]  R M Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[76]  H. Kennedy,et al.  Alpha-Beta and Gamma Rhythms Subserve Feedback and Feedforward Influences among Human Visual Cortical Areas , 2016, Neuron.

[77]  Karl J. Friston,et al.  Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus , 2014, Cerebral cortex.

[78]  James V. Haxby,et al.  CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave , 2016, bioRxiv.

[79]  Daria Proklova,et al.  Disentangling Representations of Object Shape and Object Category in Human Visual Cortex: The Animate–Inanimate Distinction , 2016, Journal of Cognitive Neuroscience.

[80]  P. Fries Neuronal gamma-band synchronization as a fundamental process in cortical computation. , 2009, Annual review of neuroscience.

[81]  S. Edelman,et al.  Toward direct visualization of the internal shape representation space by fMRI , 1998, Psychobiology.

[82]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[83]  Kathryn H. Yoo,et al.  Assessing human mirror activity with EEG mu rhythm: A meta-analysis. , 2016, Psychological bulletin.

[84]  Maggie Shiffrar,et al.  Neural activity involved in the perception of human and meaningful object motion , 2007, Neuroreport.