Waveguiding and photoluminescence in Er3+-doped Ta2O5 planar waveguides

The optimization of erbium-doped Ta2O5 thin film waveguides deposited by magnetron sputtering onto thermally oxidized silicon wafer is described. Optical constants of the film were determined by ellipsometry. For the slab waveguides, background losses below 0.4dB/cm at 633nm have been obtained before post-annealing. The samples, when pumped at 980nm yielded abroad photoluminescence spectrum (FWHM ~50 nm) centred at 1534nm, corresponding to 4 I 13/2 to the 4 I 15/2 transition of Er3+ ion. The samples were annealed up to 600 °C and both photoluminescence power and fluorescence lifetime increase with post-annealing temperature and a fluorescence lifetime of 2.4ms was achieved, yielding promising results for compact waveguide amplifiers

[1]  Joseph Zyss,et al.  Demonstration of net gain at 1550nm in an erbium-doped polymersingle mode rib waveguide , 2006 .

[2]  K. Kojima,et al.  Preparation and optical properties of sol-gel derived Er3+-doped Al2O3-Ta2O5 films , 2005 .

[3]  Maurizio Ferrari,et al.  Erbium-doped tellurite glasses with high quantum efficiency and broadband stimulated emission cross section at 1.5 μm , 2003 .

[4]  N.M.B. Perney,et al.  Neodymium-doped tantalum pentoxide waveguide lasers , 2005, IEEE Journal of Quantum Electronics.

[5]  Albert Polman,et al.  Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 µm , 1997 .

[6]  Melanie W. Cole,et al.  Influence of postdeposition annealing on the enhanced structural and electrical properties of amorphous and crystalline Ta2O5 thin films for dynamic random access memory applications , 1999 .

[7]  C. Grivas,et al.  UV photosensitivity in a Ta/sub 2/O/sub 5/ rib waveguide Mach-Zehnder interferometer , 2004, IEEE Photonics Technology Letters.

[8]  Chao-Yi Tai,et al.  Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation. , 2004, Optics express.

[9]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[10]  J. S. Hayden,et al.  Ion-exchanged waveguide lasers in Er3+/Yb3+ codoped silicate glass. , 1999, Applied optics.

[11]  John A. Thornton,et al.  Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings , 1974 .

[12]  J. Shmulovich,et al.  8-mV threshold Er/sup 3+/-doped planar waveguide amplifier , 1996, IEEE Photonics Technology Letters.

[13]  H. Terryn,et al.  Spectroscopic ellipsometric characterization of an aqueous polyacrylic dispersion on steel , 2005 .

[14]  Mk Meint Smit,et al.  Photoluminescence characterization of Er-implanted Al2O3 films , 1993 .

[15]  H. Rigneault,et al.  Fluorescence of Ta(2)O(5) thin films doped by kilo-electron-volt Er implantation: application to microcavities. , 1996, Applied optics.

[16]  F. Namavar,et al.  Low-loss planar optical waveguides fabricated in SIMOX material , 1992, IEEE Photonics Technology Letters.

[17]  Gin Jose,et al.  Erbium doped phospho-tellurite glasses for 1.5 μm optical amplifiers , 2006 .

[18]  Yijian Jiang,et al.  Raman scattering study of a phase transition in tantalum pentoxide , 2000 .

[19]  Manabu Oguma,et al.  Optical amplification in Er3+‐doped P2O5–SiO2 planar waveguides , 1996 .

[20]  G. S. Murugan,et al.  Optical properties of Er3+ and Tm3+ ions in a tellurite glass , 2005 .

[21]  T. Feuchter,et al.  High precision planar waveguide propagation loss measurement technique using a Fabry-Perot cavity , 1994, IEEE Photonics Technology Letters.

[22]  Anand Gopinath,et al.  Optical amplification at 1534 nm in erbium-doped zirconia waveguides , 2003 .