Uncertainty quantification of two-phase flow problems via measure theory and the generalized multiscale finite element method

The problem of multiphase phase flow in heterogeneous subsurface porous media is one involving many uncertainties. In particular, the permeability of the medium is an important aspect of the model that is inherently uncertain. Properly quantifying these uncertainties is essential in order to make reliable probabilistic-based predictions and future decisions. In this work, a measure-theoretic framework is employed to quantify uncertainties in a two-phase subsurface flow model in high-contrast media. Given uncertain saturation data from observation wells, the stochastic inverse problem is solved numerically in order to obtain a probability measure on the space of unknown permeability parameters characterizing the two-phase flow. As solving the stochastic inverse problem requires a number of forward model solves, we also incorporate the use of a conservative version of the generalized multiscale finite element method for added efficiency. The parameter-space probability measure is used in order to make predictions of saturation values where measurements are not available, and to validate the effectiveness of the proposed approach in the context of fine and coarse model solves. A number of numerical examples are offered to illustrate the measure-theoretic methodology for solving the stochastic inverse problem using both fine and coarse solution schemes.

[1]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[2]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 3. Application to Synthetic and Field Data , 1986 .

[3]  S. P. Neuman,et al.  Estimation of aquifer parameters under transient and steady-state conditions: 2 , 1986 .

[4]  S. P. Neuman,et al.  Estimation of Aquifer Parameters Under Transient and Steady State Conditions: 1. Maximum Likelihood Method Incorporating Prior Information , 1986 .

[5]  K. Beven,et al.  Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach , 1996 .

[6]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[7]  J. W. Thomas Numerical Partial Differential Equations , 1999 .

[8]  Keith Beven,et al.  Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology , 2001 .

[9]  Panagiotis Chatzipantelidis Finite Volume Methods for Elliptic PDE's: A New Approach , 2002 .

[10]  Michael Plexousakis,et al.  On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems , 2004, SIAM J. Numer. Anal..

[11]  Patrick Jenny,et al.  Adaptive Multiscale Finite-Volume Method for Multiphase Flow and Transport in Porous Media , 2005, Multiscale Model. Simul..

[12]  Gene H. Golub,et al.  Numerical solution of saddle point problems , 2005, Acta Numerica.

[13]  Cajo J. F. ter Braak,et al.  Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling? , 2009 .

[14]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[15]  Ivan Lunati,et al.  An Operator Formulation of the Multiscale Finite-Volume Method with Correction Function , 2009, Multiscale Model. Simul..

[16]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[17]  Philip John Binning,et al.  Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully Bayesian framework , 2010 .

[18]  Y. Rubin,et al.  Bayesian geostatistical design: Task‐driven optimal site investigation when the geostatistical model is uncertain , 2010 .

[19]  Yalchin Efendiev,et al.  Domain Decomposition Preconditioners for Multiscale Flows in High Contrast Media: Reduced Dimension Coarse Spaces , 2010, Multiscale Model. Simul..

[20]  Long Chen,et al.  A New Class of High Order Finite Volume Methods for Second Order Elliptic Equations , 2010, SIAM J. Numer. Anal..

[21]  R. Lazarov,et al.  Robust Domain Decomposition Preconditioners for Abstract Symmetric Positive Definite Bilinear Forms , 2011, 1105.1131.

[22]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[23]  Yalchin Efendiev,et al.  Multiscale finite element methods for high-contrast problems using local spectral basis functions , 2011, J. Comput. Phys..

[24]  Michael Presho,et al.  Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model , 2011 .

[25]  J. Breidt,et al.  A Measure-Theoretic Computational Method for Inverse Sensitivity Problems I: Method and Analysis , 2011, SIAM J. Numer. Anal..

[26]  Troy D. Butler,et al.  A Computational Measure Theoretic Approach to Inverse Sensitivity Problems II: A Posteriori Error Analysis , 2012, SIAM J. Numer. Anal..

[27]  Yalchin Efendiev,et al.  Local-global multiscale model reduction for flows in high-contrast heterogeneous media , 2012, J. Comput. Phys..

[28]  Wolfgang Nowak,et al.  Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design , 2012 .

[29]  Yalchin Efendiev,et al.  A Systematic Coarse-Scale Model Reduction Technique for Parameter-Dependent Flows in Highly Heterogeneous Media and Its Applications , 2012, Multiscale Model. Simul..

[30]  Yalchin Efendiev,et al.  Coarse-Grid Multiscale Model Reduction Techniques for Flows in Heterogeneous Media and Applications , 2012 .

[31]  Yuesheng Xu,et al.  Higher-order finite volume methods for elliptic boundary value problems , 2012, Adv. Comput. Math..

[32]  Ivan Lunati,et al.  A Multilevel Multiscale Finite-Volume Method , 2012, J. Comput. Phys..

[33]  D. Estep,et al.  A numerical method for solving a stochastic inverse problem for parameters. , 2013, Annals of nuclear energy.

[34]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods. Oversampling Strategies , 2013, 1304.4888.

[35]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[36]  Y. Efendiev,et al.  Generalized Multiscale Finite Element Methods. Nonlinear Elliptic Equations , 2013, 1304.5188.

[37]  Simon Tavener,et al.  A Measure-Theoretic Computational Method for Inverse Sensitivity Problems III: Multiple Quantities of Interest , 2014, SIAM/ASA J. Uncertain. Quantification.

[38]  Michael Presho,et al.  Application of a conservative, generalized multiscale finite element method to flow models , 2013, J. Comput. Appl. Math..

[39]  Michael Presho,et al.  Local-global model reduction of parameter-dependent, single-phase flow models via balanced truncation , 2014, J. Comput. Appl. Math..

[40]  Antti Huhtala,et al.  Quantifying uncertainty in material damage from vibrational data , 2014, J. Comput. Phys..

[41]  BET: Butler, Estep, Tavener Method v1.0.2 , 2015 .

[42]  Donald Estep,et al.  Parameter estimation and prediction for groundwater contamination based on measure theory , 2015 .

[43]  Bangti Jin,et al.  Multilevel Markov Chain Monte Carlo Method for High-Contrast Single-Phase Flow Problems , 2014, 1402.5068.

[44]  J. Westerink,et al.  Definition and solution of a stochastic inverse problem for the Manning’s n parameter field in hydrodynamic models , 2015, Advances in water resources.

[45]  Juan Galvis,et al.  A mass conservative Generalized Multiscale Finite Element Method applied to two-phase flow in heterogeneous porous media , 2015, J. Comput. Appl. Math..