A Fast Reordering Algorithm for Parallel Sparse Triangular Solution
暂无分享,去创建一个
[1] R Vichnevetsky,et al. IMACS '91: Proceedings of the IMACS World Congress on Computation and Applied Mathematics (13th) Held in Dublin, Ireland on July 22-26, 1991. Volume 2. Computational Fluid Dynamics and Wave Propagation, Parallel Computing, Concurrent and Supercomputing, Computational Physics/Computational Chemistry , 1991 .
[2] Fernando L. Alvarado,et al. Manipulation and Visualization of Sparse Matrices , 1990, INFORMS J. Comput..
[3] Joseph W. H. Liu. The role of elimination trees in sparse factorization , 1990 .
[4] Joseph W. H. Liu,et al. Exploiting Structural Symmetry in Unsymmetric Sparse Symbolic Factorization , 1992, SIAM J. Matrix Anal. Appl..
[5] J. G. Lewis,et al. A fast algorithm for reordering sparse matrices for parallel factorization , 1989 .
[6] R. Betancourt,et al. An efficient heuristic ordering algorithm for partial matrix refactorization , 1988 .
[7] John G. Lewis,et al. Sparse matrix test problems , 1982, SGNM.
[8] Joseph W. H. Liu,et al. Elimination Structures for Unsymmetric Sparse $LU$ Factors , 1993, SIAM J. Matrix Anal. Appl..
[9] F. Alvarado,et al. Partitioned sparse A/sup -1/ methods (power systems) , 1990 .
[10] Fernando L. Alvarado,et al. Optimal Parallel Solution of Sparse Triangular Systems , 1993, SIAM J. Sci. Comput..
[11] Fernando L. Alvarado,et al. Sparse matrix inverse factors (power systems) , 1990 .
[12] R GilbertJohn. Predicting Structure in Sparse Matrix Computations , 1994 .
[13] Joseph W. H. Liu,et al. Modification of the minimum-degree algorithm by multiple elimination , 1985, TOMS.
[14] J. Gilbert. Predicting Structure in Sparse Matrix Computations , 1994 .