Material point method analysis of fluid–structure interaction in geohazards

[1]  Zhiyi Chen,et al.  Coupled Moving Particle Simulation–Finite-Element Method Analysis of Fluid–Structure Interaction in Geodisasters , 2021 .

[2]  Yu Huang,et al.  Flow–Structure Interaction Mechanism under Coriolis Conditions , 2021 .

[3]  Yan-fang Xie,et al.  The Xinmo rockslide-debris avalanche: An analysis based on the three-dimensional material point method , 2021, Engineering Geology.

[4]  Chun Liu,et al.  A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation , 2021, Landslides.

[5]  Kang Liu,et al.  Postfailure Analysis of Slopes by Random Generalized Interpolation Material Point Method , 2021 .

[6]  M. Hicks,et al.  Study of landslides and soil-structure interaction problems using the implicit material point method , 2021, Engineering Geology.

[7]  Yong Wu,et al.  MPM evaluation of the dynamic runout process of the giant Daguangbao landslide , 2020, Landslides.

[8]  Si-ming He,et al.  Numerical assessment of the impeding effect of check dams in the Hongchun debris flow gully, Sichuan Province, China , 2020, Bulletin of Engineering Geology and the Environment.

[9]  Yong Wu,et al.  Investigation of influence of baffles on landslide debris mobility by 3D material point method , 2020, Landslides.

[10]  Gordon G. D. Zhou,et al.  Numerical study of granular debris flow run-up against slit dams by discrete element method , 2019, Landslides.

[11]  S. Cuomo,et al.  Simulation of Liquefaction and Retrogressive Slope Failure in Loose Coarse-Grained Material , 2019, International Journal of Geomechanics.

[12]  Chenfanfu Jiang,et al.  A hybrid material‐point spheropolygon‐element method for solid and granular material interaction , 2019, International Journal for Numerical Methods in Engineering.

[13]  Gordon G. D. Zhou,et al.  Three-dimensional material point method modeling of runout behavior of the Hongshiyan landslide , 2019, Canadian Geotechnical Journal.

[14]  Q. Tran,et al.  Temporal and null‐space filter for the material point method , 2019, International Journal for Numerical Methods in Engineering.

[15]  Sabrina Moretti,et al.  Effects of artificial barriers on the propagation of debris avalanches , 2019, Landslides.

[16]  Si-ming He,et al.  Effects of the configuration of a baffle–avalanche wall system on rock avalanches in Tibet Zhangmu: discrete element analysis , 2019, Bulletin of Engineering Geology and the Environment.

[17]  XinMing Qiu,et al.  v-p material point method for weakly compressible problems , 2018, Computers & Fluids.

[18]  Wei Zhang,et al.  Analysis of the Entire Failure Process of the Rotational Slide Using the Material Point Method , 2018, International Journal of Geomechanics.

[19]  T. Zhao,et al.  Quantifying the impact of dry debris flow against a rigid barrier by DEM analyses , 2018, Engineering Geology.

[20]  S. Bardenhagen,et al.  Generalized contact and improved frictional heating in the material point method , 2018 .

[21]  Jidong Zhao,et al.  A unified CFD‐DEM approach for modeling of debris flow impacts on flexible barriers , 2018, International Journal for Numerical and Analytical Methods in Geomechanics.

[22]  Dongpo Wang,et al.  Numerical analysis of effect of baffle configuration on impact force exerted from rock avalanches , 2018, Landslides.

[23]  M. Gutierrez,et al.  A soft–rigid contact model of MPM for granular flow impact on retaining structures , 2018 .

[24]  Y. You,et al.  Experimental study of viscous debris flow characteristics in drainage channel with oblique symmetrical sills , 2018 .

[25]  L. H. D. Liu,et al.  Effects of particle size of mono-disperse granular flows impacting a rigid barrier , 2018, Natural Hazards.

[26]  D. Chan,et al.  Coupling of solid deformation and pore pressure for undrained deformation—a discrete element method approach , 2017 .

[27]  Eugenio Oñate,et al.  Fast fluid–structure interaction simulations using a displacement-based finite element model equipped with an explicit streamline integration prediction , 2017 .

[28]  Charles Wang Wai Ng,et al.  Impact mechanisms of granular and viscous flows on rigid and flexible barriers , 2017 .

[29]  Francesco Calvetti,et al.  DEM assessment of impact forces of dry granular masses on rigid barriers , 2017 .

[30]  Nicolas G. Wright,et al.  A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure , 2016 .

[31]  K. Soga,et al.  The role of constitutive models in MPM simulations of granular column collapses , 2016 .

[32]  P. Cui,et al.  Failure modes of reinforced concrete columns of buildings under debris flow impact , 2015, Landslides.

[33]  Charles Wang Wai Ng,et al.  Computational investigation of baffle configuration on impedance of channelized debris flow , 2015 .

[34]  Alessandro Leonardi,et al.  Particle–Fluid–Structure Interaction for Debris Flow Impact on Flexible Barriers , 2014, Comput. Aided Civ. Infrastructure Eng..

[35]  J. Ma,et al.  A new contact algorithm in the material point method for geotechnical simulations , 2014 .

[36]  Pedro Arduino,et al.  Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures , 2014, Computational Geosciences.

[37]  Ikuo Towhata,et al.  Experimental Study of Dry Granular Flow and Impact Behavior Against a Rigid Retaining Wall , 2013, Rock Mechanics and Rock Engineering.

[38]  J. Nairn,et al.  Modeling Imperfect Interfaces in the Material PointMethod using Multimaterial Methods , 2013 .

[39]  Siming He,et al.  Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake using a distinct element method , 2012, Environmental Earth Sciences.

[40]  Yanping Lian,et al.  Coupling of finite element method with material point method by local multi-mesh contact method , 2011 .

[41]  Ronaldo I. Borja,et al.  DEM simulation of impact force exerted by granular flow on rigid structures , 2011 .

[42]  Si-ming He,et al.  Discrete element modeling of debris avalanche impact on retaining walls , 2010 .

[43]  Atsushi Yashima,et al.  Estimating the impact force generated by granular flow on a rigid obstruction , 2009 .

[44]  Eugenio Oñate,et al.  Unified Lagrangian formulation for elastic solids and incompressible fluids: Application to fluid–structure interaction problems via the PFEM , 2008 .

[45]  Dieter Dinkler,et al.  Fluid-structure coupling within a monolithic model involving free surface flows , 2005 .

[46]  Rebecca M. Brannon,et al.  An evaluation of the MPM for simulating dynamic failure with damage diffusion , 2002 .

[47]  J. Brackbill,et al.  The material-point method for granular materials , 2000 .

[48]  Howard L. Schreyer,et al.  Fluid–membrane interaction based on the material point method , 2000 .

[49]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[50]  D. Sulsky,et al.  A particle method for history-dependent materials , 1993 .

[51]  F. Ceccato,et al.  Two-phase dynamic MPM formulation for unsaturated soil , 2021 .

[52]  Eugenio Oñate,et al.  Unified Lagrangian formulation for solid and fluid mechanics and FSI problems , 2016 .

[53]  Zhen Chen,et al.  The material point method , 2015 .