Evaluation of 70/30 poly (L-lactide-co-D,L-lactide) for use as a resorbable interbody fusion cage.

OBJECT Titanium lumbar interbody spinal fusion devices are reported to be 90% effective in cases requiring single-level lumbar interbody arthrodesis, although radiographic determination of fusion has been debated. METHODS Using blinded radiographic, biomechanical, histological, and statistical measures, researchers in the present study evaluated a radiolucent 70/30 poly(L-lactide-co-D,L-lactide) interbody fusion device packed with autograft or recombinant human bone morphogenetic protein-2 on a collagen sponge in 25 sheep at 3, 6, 12, 18, and 24 months. A trend of increased fusion stiffness, radiographic fusion, and histologically confirmed fusion was demonstrated at 3 months to 24 months postimplantation. Device degradation was associated with a mild to moderate chronic inflammatory response at all postoperative sacrifice times. CONCLUSIONS Use of this material in interbody fusion may be a viable alternative to metals.

[1]  L. Engebretsen,et al.  Activation of the complement system and adverse effects of biodegradable pins of polylactic acid (Biofix) in osteochondritis dissecans. , 1994, Acta orthopaedica Scandinavica.

[2]  O. Böstman Refracture after removal of a condylar plate from the distal third of the femur. , 1990, The Journal of bone and joint surgery. American volume.

[3]  O. Böstman Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screws , 1998 .

[4]  G. Andersson Epidemiological features of chronic low-back pain , 1999, The Lancet.

[5]  B. Weiner,et al.  Lumbar Interbody Cages , 1998, Spine.

[6]  J. Michael Kabo,et al.  Histologic Evaluation of the Efficacy of rhBMP-2 Compared With Autograft Bone in Sheep Spinal Anterior Interbody Fusion , 2002, Spine.

[7]  L. Claes,et al.  Are Sheep Spines a Valid Biomechanical Model for Human Spines? , 1997, Spine.

[8]  C. D. Ray,et al.  Symposium: A Critical Discrepancy—A Criteria of Successful Arthrodesis Following Interbody Spinal Fusions , 2001, Spine.

[9]  P. McAfee,et al.  Minimally Invasive Anterior Retroperitoneal Approach to the Lumbar Spine: Emphasis on the Lateral BAK , 1998, Spine.

[10]  O. Böstman,et al.  Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. , 1990, The Journal of bone and joint surgery. British volume.

[11]  T. Smit The use of a quadruped as an in vivo model for the study of the spine – biomechanical considerations , 2002, European Spine Journal.

[12]  J. Michael Kabo,et al.  Evaluation of rhBMP‐2 With an OPLA Carrier in a Canine Posterolateral (Transverse Process) Spinal Fusion Model , 1995, Spine.

[13]  C D Ray,et al.  Threaded Titanium Cages for Lumbar Interbody Fusions , 1997, Spine.

[14]  Martijn van Dijk,et al.  The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An In Vivo Model Using Poly(L-Lactic Acid) and Titanium Cages , 2002, Spine.

[15]  W C de Bruijn,et al.  Late degradation tissue response to poly(L-lactide) bone plates and screws. , 1995, Biomaterials.

[16]  M. Markel,et al.  Cervical Interbody Fusion Cages: An Animal Model With and Without Bone Morphogenetic Protein , 1998, Spine.

[17]  O. Böstman,et al.  Osteoarthritis of the ankle after foreign-body reaction to absorbable pins and screws: a three- to nine-year follow-up study. , 1998, The Journal of bone and joint surgery. British volume.

[18]  S. Boden,et al.  Laparoscopic anterior spinal arthrodesis with rhBMP-2 in a titanium interbody threaded cage , 1998 .

[19]  T. Whitecloud,et al.  Degenerative conditions of the lumbar spine treated with intervertebral titanium cages and posterior instrumentation for circumferential fusion. , 1998, Journal of spinal disorders.

[20]  A. Weiler,et al.  Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. , 1996, The Journal of bone and joint surgery. British volume.

[21]  J O Hollinger,et al.  Biodegradable bone repair materials. Synthetic polymers and ceramics. , 1986, Clinical orthopaedics and related research.

[22]  O. Böstman,et al.  Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation: a review. , 2000, Biomaterials.

[23]  M. Henley,et al.  Fixation with bioabsorbable screws for the treatment of fractures of the ankle. , 1994, The Journal of bone and joint surgery. American volume.

[24]  S. L. Griffith,et al.  The Bagby and Kuslich Method of Lumbar Interbody Fusion: History, Techniques, and 2‐Year Follow‐up Results of a United States Prospective, Multicenter Trial , 1998, Spine.

[25]  L. Paulos,et al.  Bioabsorbable interference screws for graft fixation in anterior cruciate ligament reconstruction. , 1999, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[26]  G. Bagby Arthrodesis by the distraction-compression method using a stainless steel implant. , 1988, Orthopedics.

[27]  J M Toth,et al.  Direct Current Electrical Stimulation Increases the Fusion Rate of Spinal Fusion Cages , 2000, Spine.

[28]  R. Delamarter,et al.  Distractive Properties of a Threaded Interbody Fusion Device: An In Vivo Model , 1996, Spine.

[29]  F. Nociti,et al.  New attachment achieved by guided tissue regeneration using a bioresorbable polylactic acid membrane in dogs. , 1998, The International journal of periodontics & restorative dentistry.

[30]  L. Boyd,et al.  Imaging Pitfalls of Interbody Spinal Implants , 2000, Spine.

[31]  S. Boden,et al.  Biologic Enhancement of Spinal Fusion , 1995, The Orthopedic clinics of North America.