Four-Way Microstrip-Based Power Combining for Microwave Outphasing Power Amplifiers

A lossless multi-way outphasing and power combining system for microwave power amplification is presented. The architecture addresses one of the primary drawbacks of Chireix outphasing; namely, the sub-optimal loading conditions for the branch power amplifiers. In the proposed system, four saturated power amplifiers interact through a lossless power combining network to produce nearly resistive load modulation over a 10:1 range of output powers. This work focuses on two microstrip-based power combiner implementations: a hybrid microstrip/discrete implementation using a combination of microstrip transmission line sections with discrete shunt elements, and an all-microstrip implementation incorporating open-circuited radial stubs. We demonstrate and compare these techniques in a 2.14 GHz power amplifier system. With the all-microstrip implementation, the system demonstrates a peak CW drain efficiency of 70% and drain efficiency of over 60% over a 6.5-dB outphasing output power range with a peak power of over 100 W. We demonstrate W-CDMA modulation with 55.6% average modulated efficiency at 14.1 W average output power for a 9.15-dB peak to average power ratio (PAPR) signal. The performance of this all-microstrip system is compared to that of the proposed hybrid microstrip/discrete version and a previously reported implementation in discrete lumped-element form.

[1]  L.E. Larson,et al.  CMOS Outphasing Class-D Amplifier With Chireix Combiner , 2007, IEEE Microwave and Wireless Components Letters.

[2]  Norihiko Ui,et al.  A 2.6GHz band 537W peak power GaN HEMT asymmetric Doherty amplifier with 48% drain efficiency at 7dB , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[3]  Mohamad Sawan,et al.  IEEE Transactions on Circuits and Systems—II:Express Briefs publication information , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[4]  Frederick H. Raab,et al.  Efficiency of Outphasing RF Power-Amplifier Systems , 1985, IEEE Trans. Commun..

[5]  Peter M. Asbeck,et al.  A power re-use technique for improved efficiency of outphasing microwave power amplifiers , 1999 .

[6]  L.C.N. de Vreede,et al.  A High-Efficiency 100-W GaN Three-Way Doherty Amplifier for Base-Station Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[7]  D.J. Perreault,et al.  Resistance Compression Networks for Radio-Frequency Power Conversion , 2007, IEEE Transactions on Power Electronics.

[8]  D. J. Perreault,et al.  Design of variable-resistance class E inverters for load modulation , 2012, 2012 IEEE Energy Conversion Congress and Exposition (ECCE).

[9]  F.H. Raab,et al.  High-efficiency linear amplification by dynamic load modulation , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[10]  D. Maksimovic,et al.  Codesign of PA, Supply, and Signal Processing for Linear Supply-Modulated RF Transmitters , 2012, IEEE Transactions on Microwave Theory and Techniques.

[11]  Michael Murray. Elliott Single sideband transmission by envelope elimination and restoration. , 1953 .

[12]  F. M. Ghannouchi,et al.  Analytical Design Methodology of Outphasing Amplification Systems Using a New Simplified Chireix Combiner Model , 2012, IEEE Transactions on Microwave Theory and Techniques.

[13]  Frederick H. Raab,et al.  HF outphasing transmitter using class-E power amplifiers , 2009, 2009 IEEE MTT-S International Microwave Symposium Digest.

[14]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[15]  Mark P. van der Heijden,et al.  A 19W high-efficiency wide-band CMOS-GaN class-E Chireix RF outphasing power amplifier , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[16]  R. Kaunisto,et al.  A 2.14-GHz Chireix outphasing transmitter , 2005, IEEE Transactions on Microwave Theory and Techniques.

[17]  Michael Faulkner,et al.  Bandwidth Limitation for the Constant Envelope Components of an OFDM Signal in a LINC Architecture , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  M. Marchetti,et al.  A 90-W Peak Power GaN Outphasing Amplifier With Optimum Input Signal Conditioning , 2009, IEEE Transactions on Microwave Theory and Techniques.

[19]  David R. Cox,et al.  Linear Amplification with Nonlinear Components , 1974, IEEE Trans. Commun..

[20]  Zoya Popovic,et al.  GaN HEMT PA with over 84% power added efficiency , 2010 .

[21]  David J. Perreault,et al.  Design and control of lossless multi-way power combining and outphasing systems , 2011, 2011 IEEE 54th International Midwest Symposium on Circuits and Systems (MWSCAS).

[22]  Peter M. Asbeck,et al.  RF and Microwave Power Amplifier and Transmitter Technologies — Part 3 , 2003 .

[23]  D. J. Perreault,et al.  Lossless multi-way power combining and outphasing for high-frequency resonant inverters , 2012, Proceedings of The 7th International Power Electronics and Motion Control Conference.

[24]  G. Kompa Practical microstrip design and applications , 2005 .

[25]  H. Kuriyama,et al.  A 60% efficient envelope tracking power amplifier for 40W, 2.6GHz LTE base station with in/output harmonic tuning , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[26]  P. Asbeck,et al.  High-Efficiency Envelope-Tracking W-CDMA Base-Station Amplifier Using GaN HFETs , 2006, IEEE Transactions on Microwave Theory and Techniques.

[27]  D. J. Perreault,et al.  Experimental Validation of a Four-Way Outphasing Combiner for Microwave Power Amplification , 2013, IEEE Microwave and Wireless Components Letters.

[28]  Peter M. Asbeck,et al.  Analysis of power recycling techniques for RF and microwave outphasing power amplifiers , 2002 .

[29]  F. Raab,et al.  Power amplifiers and transmitters for RF and microwave , 2002 .

[30]  D.J. Perreault,et al.  Outphasing Energy Recovery Amplifier With Resistance Compression for Improved Efficiency , 2009, IEEE Transactions on Microwave Theory and Techniques.

[31]  Jangheon Kim,et al.  Analysis of a Fully Matched Saturated Doherty Amplifier With Excellent Efficiency , 2008, IEEE Transactions on Microwave Theory and Techniques.

[32]  F.M. Ghannouchi,et al.  Optimizing Losses in Distributed Multiharmonic Matching Networks Applied to the Design of an RF GaN Power Amplifier With Higher Than 80% Power-Added Efficiency , 2009, IEEE Transactions on Microwave Theory and Techniques.

[33]  Sungho Lee,et al.  A CMOS Outphasing Power Amplifier With Integrated Single-Ended Chireix Combiner , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[34]  R. Marante,et al.  A 1 GHz frequency-controlled class E2 DC/DC converter for efficiently handling wideband signal envelopes , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[35]  Walter Gerhard,et al.  Improved Design of Outphasing Power Amplifier Combiners , 2009, 2009 German Microwave Conference.

[36]  Bumman Kim,et al.  Highly Efficient Saturated Power Amplifier , 2012, IEEE Microwave Magazine.

[37]  David J. Perreault,et al.  A New Power Combining and Outphasing Modulation System for High-Efficiency Power Amplification , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Mark P. van der Heijden,et al.  A 70W package-integrated class-E Chireix outphasing RF power amplifier , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[39]  Ali Hajimiri,et al.  The class-E/F family of ZVS switching amplifiers , 2003 .

[40]  Tao Ni,et al.  A new impedance match method in serial chireix combiner , 2008, 2008 Asia-Pacific Microwave Conference.

[41]  Joel L. Dawson,et al.  Four-way lossless outphasing and power combining with hybrid microstrip/discrete combiner for microwave power amplification , 2013, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT).

[42]  H. Zirath,et al.  Design of Varactor-Based Tunable Matching Networks for Dynamic Load Modulation of High Power Amplifiers , 2009, IEEE Transactions on Microwave Theory and Techniques.

[43]  Robert H. Caverly,et al.  HF, VHF, and UHF systems and technology , 2002 .

[44]  Jingshi Yao,et al.  Power Amplifier Selection for LINC Applications , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[45]  S. Pamarti,et al.  A Zero-Voltage-Switching Contour-Based Outphasing Power Amplifier , 2012, IEEE Transactions on Microwave Theory and Techniques.

[46]  David J. Perreault,et al.  Lossless Multiway Power Combining and Outphasing for High-Frequency Resonant Inverters , 2014, IEEE Transactions on Power Electronics.

[47]  Andrei Grebennikov,et al.  A high-efficiency 100-W four-stage Doherty GaN HEMT power amplifier module for WCDMA systems , 2011, 2011 IEEE MTT-S International Microwave Symposium.

[48]  A. Alvandpour,et al.  Modeling and Digital Predistortion of Class-D Outphasing RF Power Amplifiers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[49]  A. Birafane,et al.  On the linearity and efficiency of outphasing microwave amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.