A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis

[1]  M. Kerschensteiner,et al.  In vivo imaging of the diseased nervous system: an update. , 2012, Current pharmaceutical design.

[2]  O. Griesbeck,et al.  In vivo imaging of partially reversible th17 cell-induced neuronal dysfunction in the course of encephalomyelitis. , 2010, Immunity.

[3]  H. Wekerle,et al.  Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions , 2009, Nature.

[4]  D. Bayliss,et al.  TASK1 modulates inflammation and neurodegeneration in autoimmune inflammation of the central nervous system. , 2009, Brain : a journal of neurology.

[5]  K. Shindler,et al.  Mechanisms of Primary Axonal Damage in a Viral Model of Multiple Sclerosis , 2009, The Journal of Neuroscience.

[6]  A. Sigal,et al.  Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis , 2009, Journal of Neuroimmunology.

[7]  Mark Ellisman,et al.  New insights into mitochondrial structure during cell death , 2009, Experimental Neurology.

[8]  N. Bresolin,et al.  Faculty Opinions recommendation of Mitochondrial changes within axons in multiple sclerosis. , 2009 .

[9]  Peter K Stys,et al.  Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis , 2009, The Lancet Neurology.

[10]  R. Flower,et al.  The acute and chronic phases of chronic relapsing experimental autoimmune encephalomyelitis (CR EAE) are ameliorated by the peroxynitrite decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinatoiron (III) chloride, (FeTPPS). , 2008, European journal of pharmacology.

[11]  L. Fan,et al.  α‐Phenyl‐n‐tert‐butyl‐nitrone attenuates lipopolysaccharide‐induced brain injury and improves neurological reflexes and early sensorimotor behavioral performance in juvenile rats , 2008, Journal of neuroscience research.

[12]  Robin J. M. Franklin,et al.  Remyelination in the CNS: from biology to therapy , 2008, Nature Reviews Neuroscience.

[13]  J. Lichtman,et al.  Ex vivo imaging of motor axon dynamics in murine triangularis sterni explants , 2008, Nature Protocols.

[14]  G. McKhann,et al.  Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer's disease , 2008, Nature Medicine.

[15]  B. Trapp,et al.  Multiple sclerosis: an immune or neurodegenerative disorder? , 2008, Annual review of neuroscience.

[16]  I. Ziabreva,et al.  Mitochondrial defects in acute multiple sclerosis lesions , 2008, Brain : a journal of neurology.

[17]  Mark Ellisman,et al.  Stable in vivo imaging of densely populated glia, axons and blood vessels in the mouse spinal cord using two-photon microscopy , 2008, Journal of Neuroscience Methods.

[18]  L. Fugger,et al.  Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system , 2007, Nature Medicine.

[19]  S. Lipton Pathologically activated therapeutics for neuroprotection , 2007, Nature Reviews Neuroscience.

[20]  T. Olsson,et al.  Neurofascin as a novel target for autoantibody-mediated axonal injury , 2007, The Journal of experimental medicine.

[21]  M. Toledano,et al.  ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis , 2007, Nature Reviews Molecular Cell Biology.

[22]  Mark H. Ellisman,et al.  Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis , 2007, Nature Cell Biology.

[23]  Jeff W Lichtman,et al.  Imaging axonal transport of mitochondria in vivo , 2007, Nature Methods.

[24]  D. Bourdette,et al.  Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis , 2007, Proceedings of the National Academy of Sciences.

[25]  Ivana Nikić,et al.  In vivo imaging of single axons in the mouse spinal cord , 2007, Nature Protocols.

[26]  J. Girault,et al.  Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. , 2006, Brain : a journal of neurology.

[27]  Stephen G. Waxman,et al.  Axonal conduction and injury in multiple sclerosis: the role of sodium channels , 2006, Nature Reviews Neuroscience.

[28]  M. Beal,et al.  Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases , 2006, Nature.

[29]  S. Hauser,et al.  The Neurobiology of Multiple Sclerosis: Genes, Inflammation, and Neurodegeneration , 2006, Neuron.

[30]  Romana Höftberger,et al.  Transient Axonal Injury in the Absence of Demyelination: A Correlate of Clinical Disease in Acute Experimental Autoimmune Encephalomyelitis , 2006, Acta Neuropathologica.

[31]  R. Rudick,et al.  Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients , 2006, Annals of neurology.

[32]  M. Coleman Axon degeneration mechanisms: commonality amid diversity , 2005, Nature Reviews Neuroscience.

[33]  J. Andersen,et al.  Superoxide Dismutase/Catalase Mimetics Are Neuroprotective against Selective Paraquat-mediated Dopaminergic Neuron Death in the Substantial Nigra , 2005, Journal of Biological Chemistry.

[34]  Jeff W Lichtman,et al.  In vivo imaging of axonal degeneration and regeneration in the injured spinal cord , 2005, Nature Medicine.

[35]  A. Lo,et al.  Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. , 2003, Journal of neurophysiology.

[36]  Kenneth J. Smith,et al.  Blockers of sodium and calcium entry protect axons from nitric oxide‐mediated degeneration , 2003, Annals of neurology.

[37]  Su Dong Kim,et al.  Hydrogen peroxide-induced cell death in cultured Aplysia sensory neurons , 2002, Brain Research.

[38]  H. Neumann,et al.  Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. , 2001, The American journal of pathology.

[39]  K. Ley,et al.  A CD2-Green Fluorescence Protein-Transgenic Mouse Reveals Very Late Antigen-4-Dependent CD8+ Lymphocyte Rolling in Inflamed Venules1 , 2001, The Journal of Immunology.

[40]  J. Fiala,et al.  Cylindrical diameters method for calibrating section thickness in serial electron microscopy , 2001, Journal of microscopy.

[41]  Kenneth J. Smith,et al.  Electrically active axons degenerate when exposed to nitric oxide , 2001, Annals of neurology.

[42]  Rafael Yuste,et al.  A custom-made two-photon microscope and deconvolution system , 2000, Pflügers Archiv.

[43]  H. Lassmann,et al.  Screening of several H-2 congenic mouse strains identified H-2q mice as highly susceptible to MOG-induced EAE with minimal adjuvant requirement , 2000, Journal of Neuroimmunology.

[44]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[45]  A. Sher,et al.  Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion , 2000, Molecular and Cellular Biology.

[46]  J. Parisi,et al.  Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination , 2000, Annals of neurology.

[47]  A. O. Dennis Willows,et al.  Computer-assisted visualizations of neural networks: expanding the field of view using seamless confocal montaging , 2000, Journal of Neuroscience Methods.

[48]  H. Koprowski,et al.  Uric acid, a peroxynitrite scavenger, inhibits CNS inflammation, blood–CNS barrier permeability changes, and tissue damage in a mouse model of multiple sclerosis , 2000, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[49]  K. Hoyt,et al.  Characterization of Hydrogen Peroxide Toxicity in Cultured Rat Forebrain Neurons , 1997, Neurochemical Research.

[50]  J. Merrill,et al.  The role of nitric oxide in multiple sclerosis , 1997, Journal of Molecular Medicine.

[51]  Hans Lassmann,et al.  Monocyte/macrophage differentiation in early multiple sclerosis lesions , 1995, Annals of neurology.

[52]  Susan Wray Imaging , 1994, Between Auschwitz and Tradition.

[53]  H. Wacker,et al.  Detection of a monocyte/macrophage differentiation antigen in routinely processed paraffin-embedded tissues by monoclonal antibody Ki-M1P. , 1991, Laboratory investigation; a journal of technical methods and pathology.

[54]  Lorenzo Galluzzi,et al.  Mitochondrial membrane permeabilization in cell death. , 2007, Physiological reviews.

[55]  Reconstruct : a Free Editor for Serial Section Microscopy , 2004 .

[56]  D. Pitt,et al.  Glutamate excitotoxicity in a model of multiple sclerosis , 2000, Nature Medicine.

[57]  ichard,et al.  AXONAL TRANSECTION IN THE LESIONS OF MULTIPLE SCLEROSIS , 1998 .