An FDEM study of particle breakage under rotational point loading

Abstract The most commonly adopted method to test the strength of single sand particles is based on platen experiments. This setup tends to align the loading direction towards the particle minimum axis and provide an upper limit for the breakage stress. This paper numerically bypasses such limitation by using a combined finite and discrete element method (FDEM). FDEM was first validated via a mesh size analysis of a spherical particle and calibrated by in-situ experimental compressions of the single quartz sand particle, where the particle shape was obtained by X-ray micro-computed tomography (XCT) and then imported into the numerical model. Systematic point loading tests were recreated to explore the role of the curvature at contacting points on the breakage behaviour. The simulations allow to probe the same non-spherical particles, i.e., realistic quartz sand and ellipsoid particles, with multiple measurements highlighting the importance of the loading direction, which was inaccessible experimentally. Results show that FDEM can capture not only the crack initiation but also fracture patterns, while taking into account realistic shapes. It is found that the distance between two contact points and their combined curvedness reflecting the particle morphology are the two major factors governing fracture patterns and stresses. When loading is roughly parallel to the minimum principal dimension of particles, the obtained breakage stress and the number of fragments approach the upper limits.

[1]  L. F. Fan,et al.  Investigation of the characteristics of rock fracture process zone using coupled FEM/DEM method , 2018, Engineering Fracture Mechanics.

[2]  J. Andrade,et al.  Level set discrete element method for three-dimensional computations with triaxial case study , 2016 .

[3]  Eric N. Landis,et al.  Microstructure and fracture in three dimensions , 2003 .

[4]  G. Buscarnera,et al.  A rate-dependent breakage model based on the kinetics of crack growth at the grain scale , 2017 .

[5]  M. Benzeggagh,et al.  Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus , 1996 .

[6]  Donald L. Turcotte,et al.  Fractals and fragmentation , 1986 .

[7]  T. M. Bodas Freitas,et al.  Particle breakage during shearing of a carbonate sand , 2004 .

[8]  Xinhua Yang,et al.  Multiscale fracture simulation of three-point bending asphalt mixture beam considering material heterogeneity , 2011 .

[9]  D. A. Ratkowsky,et al.  OF WIDE APPLICABILITY , 1984 .

[10]  Xiaopeng Xu,et al.  Numerical simulations of dynamic crack growth along an interface , 1996 .

[11]  Eduardo Bittencourt,et al.  Constitutive models for cohesive zones in mixed-mode fracture of plain concrete , 2009 .

[12]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[13]  I. Einav,et al.  Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics , 2016 .

[14]  K. Alshibli,et al.  3D finite element modeling of sand particle fracture based on in situ X‐Ray synchrotron imaging , 2016 .

[15]  Itai Einav,et al.  Breakage mechanics—Part I: Theory , 2007 .

[16]  M. Coop,et al.  Breakage behaviour of sand particles in point-load compression , 2018 .

[17]  Itai Einav,et al.  Energy dissipation from particulate systems undergoing a single particle crushing event , 2013 .

[18]  Itai Einav,et al.  Breakage mechanics—Part II: Modelling granular materials , 2007 .

[19]  Eduardo Alonso,et al.  Theoretical investigation of the time-dependent behaviour of rockfill , 2007 .

[20]  G. Buscarnera,et al.  Prediction of breakage-induced couplings in unsaturated granular soils , 2015 .

[21]  小田 匡寛,et al.  FABRIC TENSOR FOR DISCONTINUOUS GEOLOGICAL MATERIALS , 1982 .

[22]  Adrian R. Russell,et al.  Point load tests and strength measurements for brittle spheres , 2009 .

[23]  Yukio Nakata,et al.  A probabilistic approach to sand particle crushing in the triaxial test , 1999 .

[24]  Jiayan Nie,et al.  Generation of realistic sand particles with fractal nature using an improved spherical harmonic analysis , 2018, Computers and Geotechnics.

[25]  Pedro P. Camanho,et al.  An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models , 2007 .

[26]  Masanobu Oda,et al.  FABRIC TENSOR FOR DISCONTINUOUS GEOLOGICAL MATERIALS , 1982 .

[27]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[28]  K. T. Chau,et al.  Spherically isotropic, elastic spheres subject to diametral point load strength test , 1999 .

[29]  C. Reyes-Aldasoro,et al.  Image-based investigation into the primary fabric of stress-transmitting particles in sand , 2016 .

[30]  B. S. A. Tatone,et al.  A calibration procedure for two-dimensional laboratory-scale hybrid finite–discrete element simulations , 2015 .

[31]  Malcolm D. Bolton,et al.  Discrete element simulation of crushable soil , 2003 .

[32]  Malcolm D. Bolton,et al.  On the micromechanics of crushable aggregates , 1998 .

[33]  G. McDowell,et al.  Micro mechanics of drained and undrained shearing of compacted and overconsolidated crushable sand , 2017 .

[34]  M. Bolton,et al.  The fractal crushing of granular materials , 1996 .

[35]  G. Ma,et al.  A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method , 2016 .

[36]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[37]  José E. Andrade,et al.  Granular Element Method for Computational Particle Mechanics , 2012 .

[38]  T. Ng,et al.  The effect of different fracture mechanisms on impact fragmentation of brittle heterogeneous solid , 2018 .

[39]  Gioacchino Viggiani,et al.  An investigation of single sand particle fracture using X-ray micro-tomography , 2015 .

[40]  Jiansheng Xiang,et al.  A numerical investigation of mesh sensitivity for a new three-dimensional fracture model within the combined finite-discrete element method , 2016 .

[41]  H. Nagahama,et al.  Fractal fragment size distribution for brittle rocks , 1993 .

[42]  Qiao Wang,et al.  Fractal behavior and shape characteristics of fragments produced by the impact of quasi-brittle spheres , 2018 .

[43]  F. Zhu,et al.  A peridynamic investigation on crushing of sand particles , 2019, Géotechnique.

[44]  Catherine O'Sullivan,et al.  Application of Taguchi methods to DEM calibration of bonded agglomerates , 2011 .

[45]  Adrian R. Russell,et al.  Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT , 2013 .

[46]  M. Kamlah,et al.  Size-Dependent Crush Analysis of Lithium Orthosilicate Pebbles , 2014, 1408.0485.

[47]  Luis E. Vallejo,et al.  Discrete Element Method Evaluation of Granular Crushing Under Direct Shear Test Conditions , 2005 .

[48]  A. Gens,et al.  Grading evolution and critical state in a discrete numerical model of Fontainebleau sand , 2019, Géotechnique.

[49]  Chenshi Dong,et al.  Curvatures estimation on triangular mesh , 2005 .

[50]  P. P. Bartake,et al.  A generalized methodology for determination of crushing strength of granular materials , 2007 .

[51]  R. Rolli,et al.  Influence of plate material on the contact strength of Li4SiO4 pebbles in crush tests and evaluation of the contact strength in pebble–pebble contact , 2013 .

[52]  K. Alshibli,et al.  3D finite element modelling of force transmission and particle fracture of sand , 2018 .

[53]  Wei Wang,et al.  An investigation of breakage behaviour of single sand particles using a high-speed microscope camera , 2016 .

[54]  C. Peach,et al.  Failure behavior of single sand grains: Theory versus experiment , 2011 .

[55]  Jianfeng Wang,et al.  DEM analysis of energy dissipation in crushable soils , 2012 .

[56]  M. Cil,et al.  3D evolution of sand fracture under 1D compression , 2014 .

[57]  Yukitoshi Oka,et al.  DETERMINATION OF THE TENSILE STRENGTH OF ROCK BY A COMPRESSION TEST OF AN IRREGULAR TEST PIECE , 1966 .

[58]  E. Alonso,et al.  A particle model for rockfill behaviour , 2015 .

[59]  J. A. Franklin,et al.  Suggested method for determining point load strength , 1985 .

[60]  Glenn R. McDowell,et al.  Discrete element modelling of soil particle fracture , 2002 .

[61]  S. Nadimi,et al.  A micro finite-element model for soil behaviour , 2017 .

[62]  G. I. Barenblatt,et al.  Equilibrium cracks formed during brittle fracture rectilinear cracks in plane plates , 1959 .

[63]  C. B. Carter,et al.  Compressive stress effects on nanoparticle modulus and fracture , 2007 .

[64]  A. Mortensen,et al.  Compression testing spherical particles for strength: Theory of the meridian crack test and implementation for microscopic fused quartz , 2017 .

[65]  J. Andrade,et al.  All you need is shape: Predicting shear banding in sand with LS-DEM , 2018 .

[66]  Jianfeng Wang,et al.  3D quantitative shape analysis on form, roundness, and compactness with μCT , 2016 .

[67]  M. Coop,et al.  The relevance of roundness to the crushing strength of granular materials , 2017 .

[68]  Peter D. Lee,et al.  Quantifying the Evolution of Soil Fabric during Shearing using Directional Parameters , 2013 .

[69]  Catherine O'Sullivan,et al.  The mechanics of rigid irregular particles subject to uniaxial compression , 2012 .

[70]  Zdeněk P. Bažant,et al.  Is the cause of size effect on structural strength fractal or energetic-statistical? , 2004 .

[71]  M. Coop,et al.  Changes to particle characteristics associated with the compression of sands , 2011 .