Hierarchical Discriminant Analysis for Image Retrieval

A self-organizing framework for object recognition is described. We describe a hierarchical database structure for image retrieval. The self-organizing hierarchical optimal subspace learning and inference framework (SHOSLIF) system uses the theories of optimal linear projection for optimal feature derivation and a hierarchical structure to achieve logarithmic retrieval complexity. A space-tessellation tree is generated using the most expressive features (MEF) and most discriminating features (MDF) at each level of the tree. The major characteristics of the analysis include: (1) avoiding the limitation of global linear features by deriving a recursively better-fitted set of features for each of the recursively subdivided sets of training samples; (2) generating a smaller tree whose cell boundaries separate the samples along the class boundaries better than the principal component analysis, thereby giving a better generalization capability (i.e., better recognition rate in a disjoint test); (3) accelerating the retrieval using a tree structure for data pruning, utilizing a different set of discriminant features at each level of the tree. We allow for perturbations in the size and position of objects in the images through learning. We demonstrate the technique on a large image database of widely varying real-world objects taken in natural settings, and show the applicability of the approach for variability in position, size, and 3D orientation. This paper concentrates on the hierarchical partitioning of the feature spaces.

[1]  Robert Tibshirani,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  HastieTrevor,et al.  Discriminant Adaptive Nearest Neighbor Classification , 1996 .

[3]  P. Tavan,et al.  A NETWORK FOR DISCRIMINANT ANALYSIS , 1991 .

[4]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[5]  David A. Landgrebe,et al.  A survey of decision tree classifier methodology , 1991, IEEE Trans. Syst. Man Cybern..

[6]  Peter E. Hart,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[7]  Sun-Yuan Kung,et al.  A neural network learning algorithm for adaptive principal component extraction (APEX) , 1990, International Conference on Acoustics, Speech, and Signal Processing.

[8]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[9]  Eric B. Baum,et al.  When Are k-Nearest Neighbor and Back Propagation Accurate for Feasible Sized Sets of Examples? , 1990, EURASIP Workshop.

[10]  Kohji Fukunaga,et al.  Introduction to Statistical Pattern Recognition-Second Edition , 1990 .

[11]  Yehezkel Lamdan,et al.  Geometric Hashing: A General And Efficient Model-based Recognition Scheme , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[12]  Stephen M. Omohundro,et al.  Nonlinear manifold learning for visual speech recognition , 1995, Proceedings of IEEE International Conference on Computer Vision.

[13]  Juyang Weng,et al.  Genetic algorithms for object recognition in a complex scene , 1995, Proceedings., International Conference on Image Processing.

[14]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[15]  King-Sun Fu,et al.  A Nonparametric Partitioning Procedure for Pattern Classification , 1969, IEEE Transactions on Computers.

[16]  Juyang Weng,et al.  Efficient content-based image retrieval using automatic feature selection , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[17]  G. Enderlein Wilks, S. S.: Mathematical Statistics. J. Wiley and Sons, New York–London 1962; 644 S., 98 s , 1964 .

[18]  David J. Hand,et al.  Discrimination and Classification , 1982 .

[19]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[20]  F. Stein,et al.  Efficient two dimensional object recognition , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[21]  Alex Pentland,et al.  Photobook: tools for content-based manipulation of image databases , 1994, Electronic Imaging.

[22]  P. Foldiak,et al.  Adaptive network for optimal linear feature extraction , 1989, International 1989 Joint Conference on Neural Networks.

[23]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[24]  Narendra Ahuja,et al.  Learning recognition and segmentation of 3-D objects from 2-D images , 1993, 1993 (4th) International Conference on Computer Vision.

[25]  J. Rubner,et al.  A Self-Organizing Network for Principal-Component Analysis , 1989 .

[26]  Takeo Kanade,et al.  Automatic generation of object recognition programs , 1988, Proc. IEEE.

[27]  Alex Pentland,et al.  View-based and modular eigenspaces for face recognition , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[28]  Michel Loève,et al.  Probability Theory I , 1977 .

[29]  Lawrence Sirovich,et al.  Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Hiroshi Murase,et al.  Illumination planning for object recognition in structured environments , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[31]  Ralph Linsker,et al.  Self-organization in a perceptual network , 1988, Computer.

[32]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[33]  David J. Kriegman,et al.  On Recognizing and Positioning Curved 3-D Objects from Image Contours , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  Daniel L. Swets,et al.  A System for Combining Traditional Alphanumeric Queries with Content-Based Queries by Example in Ima , 1996 .

[35]  Kurt Hornik,et al.  Neural networks and principal component analysis: Learning from examples without local minima , 1989, Neural Networks.

[36]  Eric B. Baum,et al.  On the capabilities of multilayer perceptrons , 1988, J. Complex..

[37]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[38]  Daniel L. Swets,et al.  SHOSLIF-O: SHOSLIF for Object Recognition and Image Retrieval (Phase II) , 1995 .

[39]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[40]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[42]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[43]  Juyang Weng,et al.  Incremental learning for vision-based navigation , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[44]  Luc Devroye,et al.  Automatic Pattern Recognition: A Study of the Probability of Error , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  Erkki Oja,et al.  Neural Networks, Principal Components, and Subspaces , 1989, Int. J. Neural Syst..

[46]  Jerome H. Friedman,et al.  A Recursive Partitioning Decision Rule for Nonparametric Classification , 1977, IEEE Transactions on Computers.

[47]  William Grimson,et al.  Object recognition by computer - the role of geometric constraints , 1991 .

[48]  M. Bichsel Strategies of robust object recognition for the automatic identification of human faces , 1991 .

[49]  R. F.,et al.  Mathematical Statistics , 1944, Nature.