Gildes model studies of aqueous chemistry. II. The corrosion of zinc in gaseous exposure chambers

[1]  M. Bernard,et al.  In situ raman study of the corrosion of zinc-coated steel in the presence of chloride. I: Characterization and stability of zinc corrosion products , 1995 .

[2]  C. Leygraf,et al.  Initial Interaction of Sulfur Dioxide with Water Covered Metal Surfaces: An In Situ IRAS Study , 1995 .

[3]  M. Salmeron,et al.  Imaging the Condensation and Evaporation of Molecularly Thin Films of Water with Nanometer Resolution , 1995, Science.

[4]  C. Leygraf,et al.  The formation of Zn4Cl2(OH)4SO4 · 5H2O in an urban and an industrial atmosphere , 1994 .

[5]  Jan-Erik Svensson,et al.  A laboratory study of the effect of ozone, nitrogen dioxide, and sulfur dioxide on the atmospheric corrosion of zinc , 1993 .

[6]  Jan-Erik Svensson,et al.  A laboratory study of the initial stages of the atmospheric corrosion of zinc in the presence of NaCl; Influence of SO2 and NO2 , 1993 .

[7]  C. Fischer,et al.  The primary reaction in the decomposition of ozone in acidic aqueous solutions , 1991 .

[8]  P. Eriksson,et al.  The Formation of Sulfuric Acid, Nitrogen Monoxide, and Nitrous Acid on Gold in Air Containing Sub‐ppm Concentrations of SO 2 and NO 2 , 1991 .

[9]  W. J. Mcelroy A laser photolysis study of the reaction of sulfate(1-) with chloride and the subsequent decay of chlorine(1-) in aqueous solution , 1990 .

[10]  R. Garrels,et al.  Comparative study of the kinetics and mechanisms of dissolution of carbonate minerals , 1989 .

[11]  D. Jacob,et al.  Chemistry of a polluted cloudy boundary layer , 1989 .

[12]  J. Seinfeld,et al.  Sensitivity analysis of a chemical mechanism for aqueous‐phase atmospheric chemistry , 1989 .

[13]  P. Warneck,et al.  Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution , 1988 .

[14]  B. Wehrli,et al.  The coordination chemistry of weathering: III. A generalization on the dissolution rates of minerals , 1988 .

[15]  R. Huie,et al.  Rate constant for the reaction of nitrogen dioxide with sulfur(IV) over the pH range 5.3-13. , 1988, Environmental science & technology.

[16]  G. Buxton,et al.  Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution , 1988 .

[17]  T. Graedel,et al.  Degradation of materials in the atmosphere , 1986 .

[18]  D. Jacob Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate , 1986 .

[19]  J. Friel Atmospheric Corrosion Products on Al, Zn, and AlZn Metallic Coatings , 1986 .

[20]  M. L. Mandich,et al.  Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets , 1986 .

[21]  C. Baes,et al.  The hydrolysis of cations , 1986 .

[22]  A. Ross,et al.  Reactivity of HO2/O−2 Radicals in Aqueous Solution , 1985 .

[23]  W. Chameides The photochemistry of a remote marine stratiform cloud , 1984 .

[24]  G. W. Kammlott,et al.  Ozone- and Photon-Enhanced Atmospheric Sulfidation of Copper , 1984, Science.

[25]  T. Graedel,et al.  Kinetic studies of raindrop chemistry: 1. Inorganic and organic processes , 1983 .

[26]  G. H. Nancollas,et al.  The kinetics of dissolution of calcium oxalate monohydrate; a constant composition study , 1982 .

[27]  Andrew G. Dickson,et al.  The equilibrium speciation of dissolved components in freshwater and sea water at 25°C and 1 atm pressure , 1981 .

[28]  J. Christoffersen,et al.  The kinetics of dissolution of calcium sulphate dihydrate in water , 1976 .

[29]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[30]  G. H. Nancollas,et al.  Kinetics of crystal growth of calcium oxalate monohydrate , 1974 .

[31]  G. H. Nancollas,et al.  The kinetics of dissolution of calcium sulfate dihydrate , 1971 .

[32]  R. Rogers,et al.  The Nature of Corrosion of Zinc by Sulfurous Acid at Ordinary Temperatures , 1969 .

[33]  Walter J. Murphy,et al.  ADVANCES IN CHEMISTRY SERIES: Numbers 15 and 17 Demonstrate Rapidly Crowing Interest in Documentation; International Conference To Be Held in 1958 , 1956 .

[34]  M. Hey Appendix to the second edition of an index of mineral species and varieties arranged chemically , 1950 .

[35]  A. Negrón-Mendoza,et al.  Radiolysis of aqueous solutions of ammonium bicarbonate over a large dose range , 1991 .

[36]  T. Graedel Chemical insights into the interactions of the atmosphere with metals , 1990 .

[37]  W. Wilson,et al.  Laboratory investigations of the impact of dry deposition of SO2 and wet deposition of acidic species on the atmospheric corrosion of galvanized steel , 1986 .

[38]  J. Staehelin,et al.  Rate constants of reactions of ozone with organic and inorganic compounds in water—III. Inorganic compounds and radicals , 1985 .

[39]  D. Landis,et al.  Measurement of the sulfur dioxide and sulfuric acid aerosol induced corrosion of zinc in a dynamic flow system , 1982 .

[40]  J. Rabani,et al.  On some fundamental reactions in radiation chemistry: Nanosecond pulse radiolysis , 1976 .

[41]  F. Albert Cotton,et al.  Advanced Inorganic Chemistry: A Comprehensive Text , 1972 .

[42]  H. Fricke,et al.  Rate constants of OH with HO2,O2-, and H2O2+ from hydrogen peroxide formation in pulse-irradiated oxygenated water , 1968 .

[43]  E. Eyring,et al.  Kinetics of aluminum ion hydrolysis in dilute solutions , 1968 .

[44]  M. Eigen Fast elementary steps in chemical reaction mechanisms , 1963 .

[45]  B. Stevens,et al.  Progress in reaction kinetics , 1961 .