NLC-2 Graph Recognition and Isomorphism

NLC-width is a variant of clique-width with many application in graph algorithmic. This paper is devoted to graphs of NLC-width two. After giving new structural properties of the class, we propose a O(n2m)-time algorithm, improving Johansson's algorithm [14]. Moreover, our alogrithm is simple to understand. The above properties and algorithm allow us to propose a robust O(n2m)-time isomorphism algorithm for NLC-2 graphs. As far as we know, it is the first polynomial-time algorithm.

[1]  Michaël Rao,et al.  Bipartitive families and the bi-join decomposition , 2005 .

[2]  Egon Wanke,et al.  Minimizing NLC-Width is NP-Complete , 2005, WG.

[3]  Jens Gustedt,et al.  Partially Complemented Representations of Digraphs , 2002, Discret. Math. Theor. Comput. Sci..

[4]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[5]  Elias Dahlhaus,et al.  Parallel Algorithms for Hierarchical Clustering and Applications to Split Decomposition and Parity Graph Recognition , 2000, J. Algorithms.

[6]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[7]  Wen-Lian Hsu,et al.  Recognizing circle graphs in polynomial time , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[8]  J. Edmonds,et al.  A Combinatorial Decomposition Theory , 1980, Canadian Journal of Mathematics.

[9]  Michel Habib,et al.  Partitive hypergraphs , 1981, Discret. Math..

[10]  HsuWen-Lian,et al.  Recognizing circle graphs in polynomial time , 1989 .

[11]  Michaël Rao,et al.  The bi-join decomposition , 2005, Electron. Notes Discret. Math..

[12]  Jeremy P. Spinrad,et al.  Modular decomposition and transitive orientation , 1999, Discret. Math..

[13]  Vassilis Giakoumakis,et al.  Bipartite Graphs Totally Decomposable by Canonical Decomposition , 1999, Int. J. Found. Comput. Sci..

[14]  Öjvind Johansson NLC2-Decomposition in Polynomial Time , 2000, Int. J. Found. Comput. Sci..

[15]  Laurent Viennot,et al.  Partition Refinement Techniques: An Interesting Algorithmic Tool Kit , 1999, Int. J. Found. Comput. Sci..

[16]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[17]  W. Cunningham Decomposition of Directed Graphs , 1982 .