Evaluating different methods of microarray data normalization

[1]  Mike Rossner,et al.  Show me the data , 2007, The Journal of cell biology.

[2]  Jian Huang,et al.  A Two-Way Semilinear Model for Normalization and Analysis of cDNA Microarray Data , 2005 .

[3]  Jianqing Fan,et al.  Semilinear High-Dimensional Model for Normalization of Microarray Data , 2005 .

[4]  Kiyoshi Asai,et al.  Extracting relations between promoter sequences and their strengths from microarray data , 2005, Bioinform..

[5]  Cédric Archambeau,et al.  Probabilistic models in noisy environments : and their application to a visual prosthesis for the blind/ , 2005 .

[6]  Jian Huang,et al.  A robust two-way semi-linear model for normalization of cDNA microarray data , 2005, BMC Bioinformatics.

[7]  Ju Wang,et al.  Normalization of cDNA microarray data using wavelet regressions. , 2004, Combinatorial chemistry & high throughput screening.

[8]  Peter Johnstone,et al.  Normalization of microarray data using a spatial mixed model analysis which includes splines , 2004, Bioinform..

[9]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[10]  P. Tam,et al.  Normalization and analysis of cDNA microarrays using within-array replications applied to neuroblastoma cell response to a cytokine. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A I Saeed,et al.  TM4: a free, open-source system for microarray data management and analysis. , 2003, BioTechniques.

[12]  J. Squire,et al.  Chromosomal localization of DNA amplifications in neuroblastoma tumors using cDNA microarray comparative genomic hybridization. , 2003, Neoplasia.

[13]  John Quackenbush Microarray data normalization and transformation , 2002, Nature Genetics.

[14]  Guy Perrière,et al.  Between-group analysis of microarray data , 2002, Bioinform..

[15]  Jerry Li,et al.  Within the fold: assessing differential expression measures and reproducibility in microarray assays , 2002, Genome Biology.

[16]  S. Knudsen,et al.  A new non-linear normalization method for reducing variability in DNA microarray experiments , 2002, Genome Biology.

[17]  T. Speed,et al.  Design issues for cDNA microarray experiments , 2002, Nature Reviews Genetics.

[18]  Douglas M. Hawkins,et al.  A variance-stabilizing transformation for gene-expression microarray data , 2002, ISMB.

[19]  Yoganand Balagurunathan,et al.  Simulation of cDNA microarrays via a parameterized random signal model. , 2002, Journal of biomedical optics.

[20]  T. Kepler,et al.  Normalization and analysis of DNA microarray data by self-consistency and local regression , 2002, Genome Biology.

[21]  R. Shippy,et al.  An assessment of Motorola CodeLink microarray performance for gene expression profiling applications. , 2002, Nucleic acids research.

[22]  S. Dudoit,et al.  Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. , 2002, Nucleic acids research.

[23]  Ronaldo Dias A review of non-parametric curve estimation methods with application to Econometrics , 2002 .

[24]  Jason E. Stewart,et al.  Minimum information about a microarray experiment (MIAME)—toward standards for microarray data , 2001, Nature Genetics.

[25]  D. Slonim,et al.  Evaluation of normalization procedures for oligonucleotide array data based on spiked cRNA controls , 2001, Genome Biology.

[26]  Terence P. Speed,et al.  Normalization for cDNA microarry data , 2001, SPIE BiOS.

[27]  C. Li,et al.  Feature extraction and normalization algorithms for high‐density oligonucleotide gene expression array data , 2001, Journal of cellular biochemistry. Supplement.

[28]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[29]  R. Vanderbei LOQO:an interior point code for quadratic programming , 1999 .

[30]  I. Johnstone,et al.  Minimax estimation via wavelet shrinkage , 1998 .

[31]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[32]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[33]  Charles K. Chui,et al.  An Introduction to Wavelets , 1992 .

[34]  W. Härdle Smoothing Techniques: With Implementation in S , 1991 .

[35]  G. McCormick Nonlinear Programming: Theory, Algorithms and Applications , 1983 .

[36]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[37]  P. M. Prenter Splines and variational methods , 1975 .

[38]  H. L. Le Roy,et al.  Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; Vol. IV , 1969 .

[39]  Olvi L. Mangasarian,et al.  Nonlinear Programming , 1969 .

[40]  Shun-ichi Amari,et al.  A Theory of Pattern Recognition , 1968 .

[41]  E. Nadaraya On Non-Parametric Estimates of Density Functions and Regression Curves , 1965 .

[42]  V. Vapnik,et al.  A note one class of perceptrons , 1964 .

[43]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[44]  E. Nadaraya On Estimating Regression , 1964 .

[45]  V. Vapnik Pattern recognition using generalized portrait method , 1963 .