Atmospheric Non-Thermal Plasma Sources

Atmospheric non-thermal plasmas (ANTPs) have received a great deal of attention in the last two decades because of their substantial breakthrough in diverse scientific areas and today technologies based on ANTP are witnessing an unprecedented growth in the scientific arena due to their ever-escalating industrial applications in several state-of-the-art industrial fields. ANTPs are generated by a diversity of electrical discharges such as corona discharges, dielectric barrier discharges (DBD), atmospheric pressure plasma jet (APPJ) and micro hollow cathode discharges (MHCD), all having their own characteristic properties and applications. This paper deals with some fundamental aspects of gas discharge plasmas (GDP) and provides an overview of the various sources of ANTPs with an emphasis on dielectric barrier discharge.

[1]  Michael Hirth,et al.  Ozone synthesis from oxygen in dielectric barrier discharges , 1987 .

[2]  H Conrads,et al.  Plasma generation and plasma sources , 2000 .

[3]  E. Sosnin,et al.  Mercury-free Vacuum-( VUV ) and UV Excilamps : Lamps of the Future ? , 2005 .

[4]  U. Kogelschatz Atmospheric-pressure plasma technology , 2004 .

[5]  U. Kogelschatz,et al.  Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation , 1990 .

[6]  A. Schütze,et al.  Deposition of Silicon Dioxide Films with a Non-Equilibrium Atmospheric-Pressure Plasma Jet , 2001 .

[7]  Alexander Gutsol,et al.  Atmospheric pressure plasma of dielectric barrier discharges , 2005 .

[8]  Ian W. Boyd,et al.  Lifetime investigation of excimer UV sources , 2000 .

[9]  Erich E. Kunhardt,et al.  Generation of Large-Volume, Atmospheric-Pressure, , 2000 .

[10]  Karl H. Schoenbach,et al.  Microplasmas and applications , 2006 .

[11]  G. Yeom,et al.  Properties and Applications of a Modified Dielectric Barrier Discharge Generated at Atmospheric Pressure , 2005 .

[12]  Ulrich Kogelschatz,et al.  Industrial innovation based on fundamental physics , 2002 .

[13]  Karl H. Schoenbach,et al.  Non-Equilibrium Air Plasmas at Atmospheric Pressure , 2004 .

[14]  Ulrich Kogelschatz,et al.  From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges , 1999 .

[15]  A. White NEW HOLLOW CATHODE GLOW DISCHARGE , 1959 .

[16]  Jaeyoung Park,et al.  Gas Breakdown in an Atmospheric Pressure Radio-Frequency Capacitive Plasma Source , 2001 .

[17]  N. Venkatramani INDUSTRIAL PLASMA TORCHES AND APPLICATIONS , 2002 .

[18]  U. Kogelschatz Dielectric-Barrier Discharges: Their History, Discharge Physics, and Industrial Applications , 2003 .

[19]  Jaeyoung Park,et al.  Materials Processing Using an Atmospheric Pressure, RF-Generated Plasma Source , 2001 .

[20]  G. Pietsch,et al.  On the ignition voltage and structure of coplanar barrier discharges , 2002 .

[21]  U. Kogelschatz,et al.  Filamentary, patterned, and diffuse barrier discharges , 2002 .

[22]  G. Bonizzoni,et al.  Plasma physics and technology; industrial applications , 2002 .

[23]  Ulrich Kogelschatz,et al.  Nonequilibrium volume plasma chemical processing , 1991 .

[24]  J. Pain Plasma Physics , 1968, Nature.

[25]  Mool C. Gupta,et al.  VUV emission from a novel DBD-based radiation source , 2002 .

[26]  T. Detemple,et al.  Microdischarge devices fabricated in silicon , 1997 .

[27]  T. Takemura,et al.  Recent progress on UV lamps for industries , 2004, Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting..

[28]  A. Peled Photo-Excited Processes, Diagnostics and Applications , 2004 .

[29]  A. Napartovich Overview of Atmospheric Pressure Discharges Producing Nonthermal Plasma , 2001 .

[30]  Victor S. Skakun,et al.  Excilamps: efficient sources of spontaneous UV and VUV radiation , 2003 .

[31]  K. Schoenbach,et al.  Direct current high-pressure glow discharges , 1999 .

[32]  Xu Xu,et al.  Dielectric barrier discharge — properties and applications , 2001 .

[33]  Karl H. Schoenbach,et al.  Low temperature plasma physics : fundamental aspects and applications , 2001 .

[34]  A. Fridman,et al.  Plasma Physics and Engineering , 2021 .

[35]  Etching materials with an atmospheric-pressure plasma jet , 1998 .

[36]  E. Pfender Thermal plasma processing in the nineties , 1988 .

[37]  Maher I. Boulos,et al.  Thermal plasma processing , 1991 .

[38]  Jen-Shih Chang,et al.  Corona discharge processes , 1991 .

[39]  Ulrich Kogelschatz,et al.  Excimer lamps: history, discharge physics, and industrial applications , 2004, Atomic and Molecular Pulsed Lasers.

[40]  Herman V. Boenig,et al.  Plasma science and technology , 1982 .

[41]  K. V. Kozlov,et al.  The barrier discharge: basic properties and applications to surface treatment , 2003 .

[42]  Jong-Kyu Park,et al.  Decontamination of chemical and biological warfare (CBW) agents using an atmospheric pressure plasma jet (APPJ) , 1998 .

[43]  N St J Braithwaite,et al.  Introduction to gas discharges , 2000 .

[44]  M. Boulos New frontiers in thermal plasma processing , 1996 .

[45]  Jaeyoung Park,et al.  The atmospheric-pressure plasma jet: a review and comparison to other plasma sources , 1998 .

[46]  Emil Pfender,et al.  Thermal Plasma Technology: Where Do We Stand and Where Are We Going? , 1999 .

[47]  G. Pietsch Peculiarities of dielectric barrier discharges , 2001 .

[48]  A. Fridman,et al.  Non-thermal atmospheric pressure discharges , 2005 .

[49]  Joachim V. R. Heberlein,et al.  New approaches in thermal plasma technology , 2002 .

[50]  Victor S. Skakun,et al.  Capacitive and barrier discharge excilamps and their applications (Review) , 2006 .