Lattice, elastic, polarization, and electrostrictive properties of BaTiO3 from first-principles

Predicting the domain structures and properties in both bulk single crystal and thin film ferroelectrics using the phase-field approach requires the knowledge of fundamental mechanical, electrical, and electromechanical coupling properties of a single-domain state. In this work, the elastic properties and structural parameters of cubic single crystals as well as tetragonal, orthorhombic, and rhombohedral BaTiO3 single domain states are obtained using first-principles calculations under the local density approximation. The calculated lattice constants, bulk modulus, and elastic constants are in good agreement with experiments for both the cubic paraelectric phase and the low-temperature ferroelectric phases. Spontaneous polarizations for all three ferroelectric phases and the electrostrictive coefficients of cubic BaTiO3 are also computed using the Berry’s phase approach, and the results agree well with existing experimentally measured values.

[1]  Xavier Gonze,et al.  A brief introduction to the ABINIT software package , 2005 .

[2]  L. E. Cross,et al.  A Phenomenological Thermodynamic Potential for BaTiO3 Single Crystals , 2005 .

[3]  Stefano de Gironcoli,et al.  Piezoelectric properties of III-V semiconductors from first-principles linear-response theory. , 1989, Physical review letters.

[4]  H. H. Wieder,et al.  Electrical Behavior of Barium Titanatge Single Crystals at Low Temperatures , 1955 .

[5]  X. Gonze,et al.  First-principles characterization of the four phases of barium titanate , 1999 .

[6]  Elastic and piezoelectric properties of BaTiO3 at room temperature , 1999 .

[7]  S. Ostanin,et al.  Effect of the surface polarization in polar perovskites studied from first principles , 2008 .

[8]  D. Wallace,et al.  Thermodynamics of Crystals , 1972 .

[9]  Tomoaki Yamada Electromechanical Properties of Oxygen‐Octahedra Ferroelectric Crystals , 1972 .

[10]  L. Chen,et al.  Phase-field model of domain structures in ferroelectric thin films , 2001 .

[11]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[12]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[13]  Xavier Gonze,et al.  Dynamical matrices, born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory , 1997 .

[14]  Heinz Schmitt,et al.  Elastic and piezoelectric coefficients of TSSG barium titanate single crystals , 1986 .

[15]  Astronomy,et al.  Metric tensor formulation of strain in density-functional perturbation theory , 2004, cond-mat/0409269.

[16]  B. Bouhafs,et al.  First-principle calculations of structural, electronic and optical properties of BaTiO3 and BaZrO3 under hydrostatic pressure , 2005 .

[17]  Gunnar Borstel,et al.  Bulk properties and electronic structure of SrTiO3, BaTiO3, PbTiO3 perovskites: an ab initio HF/DFT study , 2004 .

[18]  C. Nan,et al.  Growth kinetics of core-shell-structured grains and dielectric constant in rare-earth-doped BaTiO3 ceramics , 2005 .

[19]  J. Hlinka,et al.  Phenomenological model of a 90° domain wall inBaTiO3-type ferroelectrics , 2006 .

[20]  Franccois Bottin,et al.  Large scale ab initio calculations based on three levels of parallelization , 2007, 0707.3405.

[21]  Karin M Rabe,et al.  Magnetic and electric phase control in epitaxial EuTiO(3) from first principles. , 2006, Physical review letters.

[22]  Stefano de Gironcoli,et al.  Ab initio calculation of phonon dispersions in semiconductors. , 1991, Physical review. B, Condensed matter.

[23]  G. V. Sin’ko Ab initiocalculations of the second-order elastic constants of crystals under arbitrary isotropic pressure , 2008 .

[24]  D. Vanderbilt,et al.  First-principles investigation of ferroelectricity in perovskite compounds. , 1994, Physical review. B, Condensed matter.

[25]  A. M. Glass,et al.  Principles and Applications of Ferroelectrics and Related Materials , 1977 .

[26]  A. C. Lawson,et al.  Structures of the ferroelectric phases of barium titanate , 1993 .

[27]  X. Gonze,et al.  Accurate GW self-energies in a plane-wave basis using only a few empty states: Towards large systems , 2008 .

[28]  G. Shirane,et al.  NEUTRON DIFFRACTION STUDY OF ORTHORHOMBIC BaTiO$sub 3$ , 1957 .

[29]  D. Vanderbilt,et al.  Theory of polarization of crystalline solids. , 1993, Physical review. B, Condensed matter.

[30]  Ronald E. Cohen,et al.  Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics , 2000, Nature.

[31]  Xavier Gonze,et al.  First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm , 1997 .

[32]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[33]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[34]  G. Hart,et al.  First-principles elastic constants and electronic structure of α-Pt2Si and PtSi , 2000, cond-mat/0008200.

[35]  Gonze,et al.  Perturbation expansion of variational principles at arbitrary order. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  Rabe,et al.  First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3. , 1995, Physical review. B, Condensed matter.

[37]  Murray Hill,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[38]  A. Hewat Structure of rhombohedral ferroelectric barium titanate , 1973 .