A Globally Convergent Nonlinear Homotopy Method for MOS Transistor Circuits

[1]  L. Chua,et al.  Tracing solution curves of nonlinear equa-tions with sharp turning points , 1984 .

[2]  Michael M. Green The Augmentation Principle of nonlinear circuits and its application to continuation methods , 1998 .

[3]  Yasuaki Inoue,et al.  An Initial Solution Algorithm for Globally Convergent Homotopy Methods , 2004 .

[4]  Seth R. Sanders,et al.  Multi-parameter homotopy methods for finding DC operating points of nonlinear circuits , 1993, ISCAS.

[5]  Albert E. Ruehli,et al.  The modified nodal approach to network analysis , 1975 .

[6]  Yasuaki Inoue,et al.  An efficient algorithm for finding multiple DC solutions based onthe SPICE-oriented Newton homotopy method , 2002, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Kiyotaka Yamamura,et al.  A fixed-point homotopy method for solving modified nodal equations , 1999 .

[8]  Yasuaki Inoue,et al.  Theorems on the Unique Initial Solution for Globally Convergent Homotopy Methods , 2003, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[10]  Yasuaki Inoue,et al.  A Homotopy Method Using a Nonlinear Auxiliary Function for Solving Transistor Circuits , 2005, IEICE Trans. Inf. Syst..

[11]  Jaijeet S. Roychowdhury,et al.  Delivering global DC convergence for large mixed-signal circuits via homotopy/continuation methods , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[12]  Yasuaki Inoue,et al.  A practical algorithm for DC operating‐point analysis of large‐scale circuits , 1994 .

[13]  E. Vittoz,et al.  An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications , 1995 .

[14]  Stanisław Hałgas,et al.  A method for the analysis of transistor circuits having multiple DC solutions , 2006 .

[15]  Yasuaki Inoue,et al.  A Practical Approach for the Fixed-Point Homotopy Method Using a Solution-Tracing Circuit , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[16]  L. Trajkovic,et al.  Passivity and no-gain properties establish global convergence of a homotopy method for DC operating points , 1990, IEEE International Symposium on Circuits and Systems.

[17]  Ljiljana Trajkovic,et al.  Artificial parameter homotopy methods for the DC operating point problem , 1993, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[18]  Mark Zwolinski,et al.  Globally convergent algorithms for DC operating point analysis of nonlinear circuits , 2003, IEEE Trans. Evol. Comput..

[19]  Zhangcai Huang,et al.  Behavioral Circuit Macromodeling and Analog LSI Implementation for Automobile Engine Intake System , 2007, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[20]  Zhangcai Huang,et al.  A Highly Linear and Wide Input Range Four-Quadrant CMOS Analog Multiplier Using Active Feedback , 2009, IEICE Trans. Electron..

[21]  Y. Inoue,et al.  A Globally Convergent Method for Finding DC Solutions of MOS Transistor Circuits , 2006 .

[22]  Y. Inoue,et al.  Theorems on the global convergence of the nonlinear homotopy method for MOS circuits , 2011, 2011 Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics.

[23]  Kiyotaka Yamamura,et al.  Simple algorithms for tracing solution curves , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.

[24]  Kiyotaka Yamamura,et al.  An Efficient Homotopy Method That Can Be Easily Implemented on SPICE , 2006, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[25]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[26]  Kiyotaka Yamamura,et al.  Finding all solutions of piecewise-linear resistive circuits using integer programming , 2011, 2011 20th European Conference on Circuit Theory and Design (ECCTD).