On the Complexity of the Escape Problem for Linear Dynamical Systems over Compact Semialgebraic Sets

We study the computational complexity of the Escape Problem for discrete-time linear dynamical systems over compact semialgebraic sets, or equivalently the Termination Problem for affine loops with compact semialgebraic guard sets. Consider the fragment of the theory of the reals consisting of negation-free ∃∀-sentences without strict inequalities. We derive several equivalent characterisations of the associated complexity class which demonstrate its robustness and illustrate its expressive power. We show that the Compact Escape Problem is complete for this class. 2012 ACM Subject Classification Theory of computation → Logic and verification

[1]  Mark Braverman,et al.  Termination of Integer Linear Programs , 2006, CAV.

[2]  Marie-Françoise Roy,et al.  Bounding the radii of balls meeting every connected component of semi-algebraic sets , 2009, J. Symb. Comput..

[3]  Joël Ouaknine,et al.  Positivity Problems for Low-Order Linear Recurrence Sequences , 2013, SODA.

[4]  Rajeev Alur,et al.  Principles of Cyber-Physical Systems , 2015 .

[5]  Jin-Yi Cai,et al.  Computing Jordan Normal Forms Exactly for Commuting Matrices in Polynomial Time , 1994, Int. J. Found. Comput. Sci..

[6]  James Renegar On the computational complexity and geome-try of the first-order theory of the reals , 1992 .

[7]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[8]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[9]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[10]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[11]  Supratik Chakraborty Termination Of Linear Programs , 2008 .

[12]  D. S. Arnon,et al.  Algorithms in real algebraic geometry , 1988 .

[13]  W. Ruppert,et al.  Algebraische Zahlentheorie , 2008 .

[14]  James Worrell,et al.  On Ranking Function Synthesis and Termination for Polynomial Programs , 2020, CONCUR.

[15]  Sriram Sankaranarayanan,et al.  A Policy Iteration Technique for Time Elapse over Template Polyhedra , 2008, HSCC.

[16]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[17]  Dima Grigoriev,et al.  Solving Systems of Polynomial Inequalities in Subexponential Time , 1988, J. Symb. Comput..

[18]  Andrea Bacciotti,et al.  Stability of dynamical polysystems via families of Liapunov functions , 2007 .

[19]  Marcus Schaefer,et al.  Fixed Points, Nash Equilibria, and the Existential Theory of the Reals , 2017, Theory of Computing Systems.

[20]  Richard J. Lipton,et al.  The Complexity of the A B C Problem , 2000, SIAM J. Comput..

[21]  Joos Heintz,et al.  Sur la complexité du principe de Tarski-Seidenberg , 1989 .

[22]  Shashi M. Srivastava,et al.  A Course on Mathematical Logic , 2008, Universitext.

[23]  Dima Grigoriev,et al.  Complexity of Deciding Tarski Algebra , 1988, J. Symb. Comput..

[24]  J. Hennet,et al.  On invariant polyhedra of continuous-time linear systems , 1993, IEEE Trans. Autom. Control..

[25]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.