MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire

Nb- and V-doped TiO2 thin films at a doping level up to 20 and 40 at%, respectively, have been grown on sapphire (0 0 0 1), , and by metalorganic chemical vapor deposition. The Nb-doped TiO2 films are epitaxial rutile films, but the V-doped TiO2 films exhibit phase separation. The epitaxial orientation relationships for the Nb-doped TiO2 films were determined by X-ray diffraction (φ scans). Rutherford backscattering and X-ray θ rocking curves reveal that the atomic alignment in the growth direction is much better for the Nb-doped TiO2 grown on sapphire (0 0 0 1) than on sapphire and . On the other hand, the in-plane alignment for the latter films is better than that for the former. Rutherford backscattering also shows that Nb atoms substitutionally incorporate at cation sites in the rutile lattice. X-ray photoelectron spectroscopy reveals that the oxidation state of both Ti and Nb is 4+. In contrast, XPS shows Ti4+ and V5+ for the V-doped TiO2 films. X-ray diffraction and atomic force microscopy indicate that the V-doped TiO2 films are comprised of epitaxial TiO2 rutile islands in a V2O5 matrix.

[1]  Charles T. Campbell,et al.  The interaction of H2O with a TiO2(110) surface , 1994 .

[2]  A. Gulino,et al.  A photoemission study of Sb-doped TiO2 , 1994 .

[3]  K. Dwight,et al.  Surface Acidity and Photocatalytic Activity of Nb2O5/TiO2 Photocatalysts , 1995 .

[4]  K. Dwight,et al.  Surface Acidity and Photocatalytic Activity of TiO2, WO3/TiO2, and MoO3/TiO2 Photocatalysts , 1994 .

[5]  Harland G. Tompkins,et al.  A User's Guide to Ellipsometry , 1992 .

[6]  M. K. Bahl,et al.  ESCA studies of some niobium compounds , 1974 .

[7]  M. W. Roberts,et al.  Surface and defect properties of solids , 1974 .

[8]  V. Henrich,et al.  Interaction of H2S with high defect density TiO2(110) surfaces , 1989 .

[9]  S. Chambers,et al.  Thermal stability and the role of oxygen vacancy defects in strong metal support interaction : Pt on Nb-doped TiO2(100) , 1996 .

[10]  Y. Do,et al.  Enhancement of photocatalytic activity of titanium(IV) oxide with molybdenum(VI) oxide , 1993 .

[11]  Jianchang Guo,et al.  Structural properties of epitaxial TiO_2 films grown on sapphire (11$\overline 1$0) by MOCVD , 1992 .

[12]  J. T. Ranney,et al.  The Surface Science of Metal Oxides , 1995 .

[13]  T. Perng,et al.  Effects of sintering on the photoelectrochemical properties of Nb-doped TiO2 electrodes , 1995 .

[14]  P. J. Hardman,et al.  Step and point defect effects on TiO2(100) reactivity , 1991 .

[15]  K. Sakata Study of the Phase Transition in Nb x Ti 1− x O 2 , 1969 .

[16]  N. Eror Self-compensation in niobium-doped TiO2 , 1981 .

[17]  Alfonso Franciosi,et al.  Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films , 1993 .

[18]  S. Thevuthasan,et al.  Molecular beam epitaxial growth and characterization of mixed (Ti,Nb)O2 rutile films on TiO2(100) , 1996 .

[19]  Y. Gao,et al.  Microstructure of TiO sub 2 rutile thin films deposited on (11 2 0). alpha. --Al sub 2 O sub 3 , 1991 .

[20]  S. Chambers,et al.  Synthesis and characterization of Nb-doped TiO2(110) surfaces by molecular beam epitaxy , 1996 .

[21]  M. A. Henderson The influence of oxide surface structure on adsorbate chemistry : desorption of water from the smooth, the microfaceted and the ion sputtered surfaces of TiO2(100) , 1994 .

[22]  G. Somorjai,et al.  Electron spectroscopy studies of the chemisorption of O2, H2 and H2O on the TiO2(100) surfaces with varied stoichiometry: Evidence for the photogeneration of Ti+3 and for its importance in chemisorption , 1978 .

[23]  S. Chan DEGENERATE EPITAXY, COINCIDENCE EPITAXY AND ORIGIN OF "SPECIAL" BOUNDARIES IN THIN FILMS , 1994 .

[24]  P. Porta,et al.  A structural, thermogravimetric, magnetic, electron spin resonance, and optical reflectance study of the NbOxTiO2 system , 1988 .

[25]  H. Nakabayashi Properties of Acid Sites on TiO2–SiO2 and TiO2–Al2O3 Mixed Oxides Measured by Infrared Spectroscopy , 1992 .

[26]  J. Yoon,et al.  Ellipsometric analysis of growth process and corrosion resistance of Nb[sub 2]O[sub 5] films formed by MOCVD , 1994 .

[27]  S. Chambers,et al.  MBE growth and characterization of epitaxial TiO2 and Nb-doped TiO2 films , 1996 .

[28]  S. Thevuthasan,et al.  Geometric and electronic structure of epitaxial NbxTi1−xO2 on TiO2(110) , 1996 .

[29]  S. Chambers,et al.  Effect of substrate orientation on the crystal quality and surface roughness of Nb-doped TiO_2 epitaxial films on TiO_2 , 1996 .

[30]  E. Sato,et al.  New preparation method for doped polycrystalline TiO2 and Nb2O5 and their photoelectrochemical properties , 1982 .

[31]  Yang Gao,et al.  In-situ IR and spectroscopic ellipsometric analysis of growth process and structural properties of Ti1−xNbxO2 thin films by metal-organic chemical vapor deposition , 1999 .

[32]  Travis J. Anderson,et al.  Solid precursor MOCVD of heteroepitaxial rutile phase TiO2 , 1996 .