Adaptive Estimation of Fuzzy Cognitive Maps With Proven Stability and Parameter Convergence

Fuzzy cognitive maps (FCMs) have been introduced by Kosko to model complex behavioral systems in various scientific areas. One issue that has not been adequately studied so far is the conditions under which they reach a certain equilibrium point after an initial perturbation. This is equivalent to studying the existence and uniqueness of solutions for their concept values. In this paper, we study the existence of solutions of FCMs equipped with continuous differentiable sigmoid functions having contractive or, at least, non-expansive properties. This is done by using an appropriately defined contraction mapping theorem and the non-expansive mapping theorem. It is proved that when the weight interconnections fulfill certain conditions, the concept values will converge to a unique solution, regardless of the exact values of the initial concept values perturbations, or in some cases, a solution exists that may not necessarily be unique; otherwise, the existence or the uniqueness of equilibrium cannot be assured. Based on these results, an adaptive weight-estimation algorithm is proposed that employs appropriate weight projection criteria to assure that the uniqueness of FCM solution is not compromised. In view of these results, recently proposed extensions of FCM, which are the fuzzy cognitive networks (FCN), are invoked.

[1]  Sanming Zhou,et al.  Dynamic domination in fuzzy causal networks , 2006, IEEE Trans. Fuzzy Syst..

[2]  Zhi-Qiang Liu,et al.  On causal inference in fuzzy cognitive maps , 2000, IEEE Trans. Fuzzy Syst..

[3]  Zhi-Qiang Liu,et al.  A contextual fuzzy cognitive map framework for geographic information systems , 1999, IEEE Trans. Fuzzy Syst..

[4]  João Paulo Carvalho,et al.  Qualitative modelling of an economic system using rule-based fuzzy cognitive maps , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[5]  Elpiniki I. Papageorgiou,et al.  A Weight Adaptation Method for Fuzzy Cognitive Maps to a Process Control Problem , 2004, International Conference on Computational Science.

[6]  Chrysostomos D. Stylios,et al.  Fuzzy cognitive maps: a model for intelligent supervisory control systems , 1999 .

[7]  Manolis A. Christodoulou,et al.  On the existence and uniqueness of solutions for the concept values in Fuzzy Cognitive Maps , 2008, 2008 47th IEEE Conference on Decision and Control.

[8]  P. C. Silva,et al.  Fuzzy cognitive maps over possible worlds , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[9]  Zhi-Qiang Liu,et al.  Contextual fuzzy cognitive maps for geographic information systems , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[10]  Basil G. Mertzios,et al.  A new method for reaching equilibrium points in fuzzy cognitive maps , 2004, 2004 2nd International IEEE Conference on 'Intelligent Systems'. Proceedings (IEEE Cat. No.04EX791).

[11]  Bart Kosko,et al.  Fuzzy Engineering , 1996 .

[12]  Michael N. Vrahatis,et al.  Fuzzy Cognitive Maps Learning Using Particle Swarm Optimization , 2005, Journal of Intelligent Information Systems.

[13]  Alex Chong,et al.  Fuzzy Cognitive Maps With Genetic Algorithm For Goal-Oriented Decision Support , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[14]  Athanasios K. Tsadiras,et al.  Comparing the inference capabilities of binary, trivalent and sigmoid fuzzy cognitive maps , 2008, Inf. Sci..

[15]  Zhi-Qiang Liu,et al.  Quotient fuzzy cognitive maps , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[16]  Feng Liu,et al.  Proceedings of the first international conference on Neutrosophy, neutrosophic logic, neutrosophic set, neutrosophic probability and statistics , 2003, math/0306384.

[17]  Witold Pedrycz,et al.  Genetic learning of fuzzy cognitive maps , 2005, Fuzzy Sets Syst..

[18]  W. Rudin Principles of mathematical analysis , 1964 .

[19]  Chunyan Miao,et al.  Dynamical cognitive network - an extension of fuzzy cognitive map , 2001, IEEE Trans. Fuzzy Syst..

[20]  Voula C. Georgopoulos,et al.  Fuzzy Cognitive Map Approach to Process Control Systems Chrysostomos , 1999, J. Adv. Comput. Intell. Intell. Informatics.

[21]  Sanming Zhou,et al.  Fuzzy causal networks: general model, inference, and convergence , 2006, IEEE Transactions on Fuzzy Systems.

[22]  Witold Pedrycz,et al.  Data-driven Nonlinear Hebbian Learning method for Fuzzy Cognitive Maps , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[23]  Yiannis S. Boutalis,et al.  Fuzzy Cognitive Maps for Pattern Recognition Applications , 2008, Int. J. Pattern Recognit. Artif. Intell..

[24]  Alberto Vázquez Huerga A Balanced Differential Learning algorithm in Fuzzy Cognitive Maps , 2002 .

[25]  Witold Pedrycz,et al.  Evolutionary Development of Fuzzy Cognitive Maps , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[26]  B. Kosko Differential Hebbian learning , 2008 .

[27]  Michael D. Coovert,et al.  Modeling dynamic social and psychological processes with fuzzy cognitive maps , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[28]  A. Kandel,et al.  Constructing fuzzy cognitive maps , 1995, Proceedings of 1995 IEEE International Conference on Fuzzy Systems..

[29]  Voula C. Georgopoulos,et al.  A fuzzy cognitive map approach to differential diagnosis of specific language impairment , 2003, Artif. Intell. Medicine.

[30]  Bart Kosko,et al.  Fuzzy Cognitive Maps , 1986, Int. J. Man Mach. Stud..

[31]  James C. Bezdek,et al.  Pool2: a generic system for cognitive map development and decision analysis , 1989, IEEE Trans. Syst. Man Cybern..

[32]  Witold Pedrycz,et al.  Numerical and Linguistic Prediction of Time Series With the Use of Fuzzy Cognitive Maps , 2008, IEEE Transactions on Fuzzy Systems.

[33]  Petros A. Ioannou,et al.  Adaptive control tutorial , 2006, Advances in design and control.

[34]  Julie A. Dickerson,et al.  Fuzzy feature extraction and visualization for intrusion detection , 2003, The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03..

[35]  Manolis A. Christodoulou,et al.  Fuzzy cognitive network: A general framework , 2007, Intell. Decis. Technol..

[36]  Yiannis S. Boutalis,et al.  A novel maximum power point tracking method for PV systems using fuzzy cognitive networks (FCN) , 2007 .

[37]  B. Kosco Differential Hebbian learning , 1987 .

[38]  Zhi-Qiang Liu,et al.  Contextual fuzzy cognitive map for decision support in geographic information systems , 1999, IEEE Trans. Fuzzy Syst..

[39]  D. E. Koulouriotis,et al.  Learning fuzzy cognitive maps using evolution strategies: a novel schema for modeling and simulating high-level behavior , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[40]  Y.S. Boutalis,et al.  New maximum power point tracker for PV arrays using fuzzy controller in close cooperation with fuzzy cognitive networks , 2006, IEEE Transactions on Energy Conversion.

[41]  Florentin Smarandache,et al.  FUZZY COGNITIVE MAPS AND NEUTROSOPHIC COGNITIVE MAPS , 2003, math/0311063.

[42]  Zhi-Qiang Liu,et al.  Dynamic domination for fuzzy cognitive maps , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[43]  Manolis A. Christodoulou,et al.  A new method for weight updating in fuzzy cognitive maps using system feedback , 2005, ICINCO.

[44]  W.-R. Zhang,et al.  A cognitive-map-based approach to the coordination of distributed cooperative agents , 1992, IEEE Trans. Syst. Man Cybern..

[45]  Masafumi Hagiwara Extended Fuzzy Cognitive Maps , 1994 .

[46]  Yuan Miao,et al.  Fuzzy cognitive map and its causal inferences , 1999, FUZZ-IEEE'99. 1999 IEEE International Fuzzy Systems. Conference Proceedings (Cat. No.99CH36315).

[47]  José Aguilar,et al.  Adaptive Random Fuzzy Cognitive Maps , 2002, IBERAMIA.

[48]  Sanming Zhou,et al.  Quotient FCMs-a decomposition theory for fuzzy cognitive maps , 2003, IEEE Trans. Fuzzy Syst..

[49]  Chrysostomos D. Stylios,et al.  A Soft Computing Approach for Modelling the Supervisor of Manufacturing Systems , 1999, J. Intell. Robotic Syst..

[50]  Chrysostomos D. Stylios,et al.  Active Hebbian learning algorithm to train fuzzy cognitive maps , 2004, Int. J. Approx. Reason..

[51]  Dimitris E. Koulouriotis,et al.  Anamorphosis of fuzzy cognitive maps for operation in ambiguous and multi-stimulus real world environments , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[52]  D. E. Koulouriotis,et al.  A fuzzy cognitive map-based stock market model: synthesis, analysis and experimental results , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).

[53]  Bart Kosko,et al.  Virtual Worlds as Fuzzy Cognitive Maps , 1993, Presence: Teleoperators & Virtual Environments.

[54]  Y. Boutalis,et al.  A Fuzzy Cognitive Network Based Control Scheme for An Anaerobic Digestion Process , 2006, 2006 14th Mediterranean Conference on Control and Automation.

[55]  Konstantinos G. Margaritis,et al.  Using Fuzzy Cognitive Maps as a Decision Support System for Political Decisions , 2001, Panhellenic Conference on Informatics.

[56]  Chrysostomos D. Stylios,et al.  Fuzzy Cognitive Maps in modeling supervisory control systems , 2000, J. Intell. Fuzzy Syst..

[57]  Patrick Reignier,et al.  Put fuzzy cognitive maps to work in virtual worlds , 2001, 10th IEEE International Conference on Fuzzy Systems. (Cat. No.01CH37297).