Construction of ${\BBZ}_4$-Linear Reed–Muller Codes

In this paper, new quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension, and the minimum distance, are studied. Using these constructions, new families of quaternary Reed-Muller (RM) codes are built with the peculiarity that after using the Gray map the obtained Z4-linear codes have the same parameters and fundamental properties as the codes in the usual binary linear RM family. To make the duality relationships in the constructed families more evident, the concept of Kronecker inner product is introduced.

[1]  Kevin T. Phelps,et al.  Quaternary Reed-Muller codes , 2005, IEEE Transactions on Information Theory.

[2]  Xiang-dong Hou,et al.  The Reed-Muller Code Is Not -Linear for , 1998 .

[3]  Kevin T. Phelps,et al.  On the additive (/spl Zopf//sub 4/-linear and non-/spl Zopf//sub 4/-linear) Hadamard codes: rank and kernel , 2006, IEEE Transactions on Information Theory.

[4]  Faina I. Solov'eva On ℤ4-linear codes with the parameters of Reed-Muller codes , 2007, Probl. Inf. Transm..

[5]  Denis S. Krotov,et al.  I T ] 1 O ct 2 00 7 Z 4-Linear Perfect Codes * , 2008 .

[6]  Jaume Pujol,et al.  Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.

[7]  P. V. Kumar,et al.  The &-Linearity of Kerdcck , Preparata , Goethals , and Related Codes , 2022 .

[8]  A. Robert Calderbank,et al.  Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.

[9]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[10]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[11]  C. Y. Lee,et al.  Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.

[12]  Denis S. Krotov Z4-linear Hadamard and extended perfect codes , 2001, Electron. Notes Discret. Math..

[13]  Jaume Pujol,et al.  Z2Z4-linear codes: generator matrices and duality , 2007, ArXiv.

[14]  P. Delsarte AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .

[15]  Faina I. Solov'eva,et al.  Quaternary Plotkin Constructions and Quaternary Reed-Muller Codes , 2007, AAECC.

[17]  Josep Rifà,et al.  A characterization of 1-perfect additive codes , 1999, IEEE Trans. Inf. Theory.

[18]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[19]  Morris Plotkin,et al.  Binary codes with specified minimum distance , 1960, IRE Trans. Inf. Theory.

[20]  Alekseii D. Korshunov Discrete Analysis and Operations Research , 1995 .

[21]  Xiang-dong Hou,et al.  The Reed-Muller Code R(r, m) Is Not Z4-Linear for 3 <= r <= m-2 , 1998, IEEE Trans. Inf. Theory.

[22]  Kevin T. Phelps,et al.  ZRM Codes , 2008, IEEE Transactions on Information Theory.

[23]  Kevin T. Phelps,et al.  On the additive ( Z 4-linear and non-Z 4-linear ) Hadamard codes . Rank and Kernel , 2005 .