Construction of ${\BBZ}_4$-Linear Reed–Muller Codes
暂无分享,去创建一个
[1] Kevin T. Phelps,et al. Quaternary Reed-Muller codes , 2005, IEEE Transactions on Information Theory.
[2] Xiang-dong Hou,et al. The Reed-Muller Code Is Not -Linear for , 1998 .
[3] Kevin T. Phelps,et al. On the additive (/spl Zopf//sub 4/-linear and non-/spl Zopf//sub 4/-linear) Hadamard codes: rank and kernel , 2006, IEEE Transactions on Information Theory.
[4] Faina I. Solov'eva. On ℤ4-linear codes with the parameters of Reed-Muller codes , 2007, Probl. Inf. Transm..
[5] Denis S. Krotov,et al. I T ] 1 O ct 2 00 7 Z 4-Linear Perfect Codes * , 2008 .
[6] Jaume Pujol,et al. Translation-invariant propelinear codes , 1997, IEEE Trans. Inf. Theory.
[7] P. V. Kumar,et al. The &-Linearity of Kerdcck , Preparata , Goethals , and Related Codes , 2022 .
[8] A. Robert Calderbank,et al. Quaternary quadratic residue codes and unimodular lattices , 1995, IEEE Trans. Inf. Theory.
[9] Zhe-Xian X. Wan,et al. Quaternary Codes , 1997 .
[10] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[11] C. Y. Lee,et al. Some properties of nonbinary error-correcting codes , 1958, IRE Trans. Inf. Theory.
[12] Denis S. Krotov. Z4-linear Hadamard and extended perfect codes , 2001, Electron. Notes Discret. Math..
[13] Jaume Pujol,et al. Z2Z4-linear codes: generator matrices and duality , 2007, ArXiv.
[14] P. Delsarte. AN ALGEBRAIC APPROACH TO THE ASSOCIATION SCHEMES OF CODING THEORY , 2011 .
[15] Faina I. Solov'eva,et al. Quaternary Plotkin Constructions and Quaternary Reed-Muller Codes , 2007, AAECC.
[17] Josep Rifà,et al. A characterization of 1-perfect additive codes , 1999, IEEE Trans. Inf. Theory.
[18] O. Antoine,et al. Theory of Error-correcting Codes , 2022 .
[19] Morris Plotkin,et al. Binary codes with specified minimum distance , 1960, IRE Trans. Inf. Theory.
[20] Alekseii D. Korshunov. Discrete Analysis and Operations Research , 1995 .
[21] Xiang-dong Hou,et al. The Reed-Muller Code R(r, m) Is Not Z4-Linear for 3 <= r <= m-2 , 1998, IEEE Trans. Inf. Theory.
[22] Kevin T. Phelps,et al. ZRM Codes , 2008, IEEE Transactions on Information Theory.
[23] Kevin T. Phelps,et al. On the additive ( Z 4-linear and non-Z 4-linear ) Hadamard codes . Rank and Kernel , 2005 .