OrthoClust: an orthology-based network framework for clustering data across multiple species

[1]  Karen Spärck Jones A statistical interpretation of term specificity and its application in retrieval , 2021, J. Documentation.

[2]  D. S. Gross,et al.  Chromatin , 2020, Definitions.

[3]  Peter J. Bickel,et al.  Comparative analysis of regulatory information and circuits across distant species , 2014, Nature.

[4]  Mark Gerstein,et al.  OrthoClust: an orthology-based network framework for clustering data across multiple species , 2014, Genome Biology.

[5]  Peter J. Bickel,et al.  Comparative Analysis of the Transcriptome across Distant Species , 2014, Nature.

[6]  Mona Singh,et al.  Computational solutions for omics data , 2013, Nature Reviews Genetics.

[7]  Michael P Snyder,et al.  High-throughput sequencing for biology and medicine , 2013, Molecular systems biology.

[8]  Paul C. Leyland,et al.  FlyBase: improvements to the bibliography , 2012, Nucleic Acids Res..

[9]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[10]  D. Bartel,et al.  Long noncoding RNAs in C. elegans , 2012, Genome research.

[11]  Mark Gerstein,et al.  TIP: A probabilistic method for identifying transcription factor target genes from ChIP-seq binding profiles , 2011, Bioinform..

[12]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[13]  Matko Bosnjak,et al.  REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms , 2011, PloS one.

[14]  Haifeng Li,et al.  Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation , 2011, PLoS Comput. Biol..

[15]  F. Feltus,et al.  Gene Coexpression Network Alignment and Conservation of Gene Modules between Two Grass Species: Maize and Rice[C][W][OA] , 2011, Plant Physiology.

[16]  Shuli Kang,et al.  Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network , 2011, Nucleic acids research.

[17]  Mark Gerstein,et al.  Measuring the Evolutionary Rewiring of Biological Networks , 2011, PLoS Comput. Biol..

[18]  Mark Gerstein,et al.  Getting Started in Gene Orthology and Functional Analysis , 2010, PLoS Comput. Biol..

[19]  Weixiong Zhang,et al.  A general co-expression network-based approach to gene expression analysis: comparison and applications , 2010, BMC Systems Biology.

[20]  Kimberly Van Auken,et al.  WormBase: a comprehensive resource for nematode research , 2009, Nucleic Acids Res..

[21]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[22]  Julie A. Dickerson,et al.  Arabidopsis gene co-expression network and its functional modules , 2009, BMC Bioinformatics.

[23]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[24]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[25]  V. Traag,et al.  Community detection in networks with positive and negative links. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  Bonnie Berger,et al.  Global alignment of multiple protein interaction networks with application to functional orthology detection , 2008, Proceedings of the National Academy of Sciences.

[27]  Paul Pavlidis,et al.  Gene Ontology term overlap as a measure of gene functional similarity , 2008, BMC Bioinformatics.

[28]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[29]  M. Long,et al.  The evolution of courtship behaviors through the origination of a new gene in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[30]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[31]  Brad T. Sherman,et al.  The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists , 2007, Genome Biology.

[32]  Mark Gerstein,et al.  Total ancestry measure: quantifying the similarity in tree-like classification, with genomic applications , 2007, Bioinform..

[33]  Anita Burgun-Parenthoine,et al.  A transversal approach to predict gene product networks from ontology-based similarity , 2007, BMC Bioinformatics.

[34]  Haiyuan Yu,et al.  Developing a similarity measure in biological function space , 2007 .

[35]  Jacques van Helden,et al.  Evaluation of clustering algorithms for protein-protein interaction networks , 2006, BMC Bioinformatics.

[36]  Budapest University of Technology,et al.  Limited resolution in complex network community detection with Potts model approach , 2006, cond-mat/0610370.

[37]  S. Fortunato,et al.  Resolution limit in community detection , 2006, Proceedings of the National Academy of Sciences.

[38]  Johannes Berg,et al.  Cross-species analysis of biological networks by Bayesian alignment. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  E. Koonin,et al.  Conservation and coevolution in the scale-free human gene coexpression network. , 2004, Molecular biology and evolution.

[41]  M. Newman Analysis of weighted networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  M. Gerstein,et al.  Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. , 2004, Genome research.

[43]  B. Snel,et al.  The yeast coexpression network has a small‐world, scale‐free architecture and can be explained by a simple model , 2004, EMBO reports.

[44]  J. Reichardt,et al.  Detecting fuzzy community structures in complex networks with a Potts model. , 2004, Physical review letters.

[45]  Joshua M. Stuart,et al.  A Gene-Coexpression Network for Global Discovery of Conserved Genetic Modules , 2003, Science.

[46]  U. Alon Biological Networks: The Tinkerer as an Engineer , 2003, Science.

[47]  R. Karp,et al.  Conserved pathways within bacteria and yeast as revealed by global protein network alignment , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[48]  Carole A. Goble,et al.  Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation , 2003, Bioinform..

[49]  E. Domany,et al.  Potts ferromagnets on coexpressed gene networks: identifying maximally stable partitions. , 2003, Physical review letters.

[50]  Joseph T. Chang,et al.  Spectral biclustering of microarray data: coclustering genes and conditions. , 2003, Genome research.

[51]  W. Wong,et al.  Transitive functional annotation by shortest-path analysis of gene expression data , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Sneppen,et al.  Specificity and Stability in Topology of Protein Networks , 2002, Science.

[53]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  S. Oliver Proteomics: Guilt-by-association goes global , 2000, Nature.

[55]  J. Hopfield,et al.  From molecular to modular cell biology , 1999, Nature.

[56]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[58]  P. Doreian,et al.  A partitioning approach to structural balance , 1996 .

[59]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[60]  J. Mattick,et al.  Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. , 2006, Trends in genetics : TIG.

[61]  F. Y. Wu The Potts model , 1982 .