Spatial organization of transcription in bacterial cells.

Prokaryotic transcription has been extensively studied over the past half a century. However, there often exists a gap between the structural, mechanistic description of transcription obtained from in vitro biochemical studies, and the cellular, phenomenological observations from in vivo genetic studies. It is now accepted that a living bacterial cell is a complex entity; the heterogeneous cellular environment is drastically different from the homogenous, well-mixed situation in vitro. Where molecules are inside a cell may be important for their function; hence, the spatial organization of different molecular components may provide a new means of transcription regulation in vivo, possibly bridging this gap. In this review, we survey current evidence for the spatial organization of four major components of transcription [genes, transcription factors, RNA polymerase (RNAP) and RNAs] and critically analyze their biological significance.

[1]  J. Gober,et al.  Cell Cycle–Dependent Polar Localization of Chromosome Partitioning Proteins in Caulobacter crescentus , 1997, Cell.

[2]  M. Berlyn Linkage Map of Escherichia coli K-12, Edition 10: The Traditional Map , 1998, Microbiology and Molecular Biology Reviews.

[3]  M. Groudine,et al.  The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. , 2006, Genes & development.

[4]  Terence Hwa,et al.  Transcriptional regulation by the numbers: models. , 2005, Current opinion in genetics & development.

[5]  W. D. Laat,et al.  A Decade of 3c Technologies: Insights into Nuclear Organization References , 2022 .

[6]  R. S. Grand,et al.  Genome conformation capture reveals that the Escherichia coli chromosome is organized by replication and transcription , 2013, Nucleic acids research.

[7]  Jie Xiao,et al.  Transcription-Factor-Mediated DNA Looping Probed by High-Resolution, Single-Molecule Imaging in Live E. coli Cells , 2013, PLoS biology.

[8]  Marc A Marti-Renom,et al.  The Three-dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation , 2022 .

[9]  Rahul Roy,et al.  Spatial organization of RNA polymerase II inside a mammalian cell nucleus revealed by reflected light-sheet superresolution microscopy , 2013, Proceedings of the National Academy of Sciences.

[10]  Harish Vashisth,et al.  Chromosome Organization by a Nucleoid-Associated Protein in Live Bacteria , 2013 .

[11]  P. Dennis,et al.  Regulation of ribonucleic acid synthesis in Escherichia coli B-r: an analysis of a shift-up. 1. Ribosomal RNA chain growth rates. , 1973, Journal of molecular biology.

[12]  M. Elowitz,et al.  Protein Mobility in the Cytoplasm ofEscherichia coli , 1999, Journal of bacteriology.

[13]  S. Ben-Yehuda,et al.  Spatial organization of a replicating bacterial chromosome , 2008, Proceedings of the National Academy of Sciences.

[14]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[15]  A. Ishihama,et al.  Twelve Species of the Nucleoid-associated Protein from Escherichia coli , 1999, The Journal of Biological Chemistry.

[16]  D. Jin,et al.  Dissociation and re-association of RNA polymerase with DNA during osmotic stress response in Escherichia coli , 2012, Nucleic acids research.

[17]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[18]  Ivan Junier,et al.  Genomic organization of evolutionarily correlated genes in bacteria: limits and strategies. , 2012, Journal of molecular biology.

[19]  J. E. Cabrera,et al.  Active Transcription of rRNA Operons Condenses the Nucleoid in Escherichia coli: Examining the Effect of Transcription on Nucleoid Structure in the Absence of Transertion , 2009, Journal of bacteriology.

[20]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Dieter W. Heermann,et al.  A model for Escherichia coli chromosome packaging supports transcription factor-induced DNA domain formation , 2011, Nucleic acids research.

[22]  J. Elf,et al.  Single-molecule investigations of the stringent response machinery in living bacterial cells , 2011, Proceedings of the National Academy of Sciences.

[23]  H. Bremer,et al.  Regulation of ribonucleic acid synthesis in Escherichia coli B-r: an analysis of a shift-up. II. Fraction of RNA polymerase engaged in the synthesis of stable RNA at different steady-state growth rates. , 1973, Journal of molecular biology.

[24]  M. Hentze,et al.  Using the lambdaN peptide to tether proteins to RNAs. , 2004, Methods in molecular biology.

[25]  S. Adhya,et al.  Genetic Analysis of GalR Tetramerization in DNA Looping during Repressosome Assembly* , 2002, The Journal of Biological Chemistry.

[26]  Shane C. Dillon,et al.  Bacterial nucleoid-associated proteins, nucleoid structure and gene expression , 2010, Nature Reviews Microbiology.

[27]  Roger Y. Tsien,et al.  A genetically encoded fluorescent reporter reveals oscillatory phosphorylation by protein kinase C , 2003, The Journal of cell biology.

[28]  S. Busby,et al.  Location and dynamics of an active promoter in Escherichia coli K-12 , 2011, The Biochemical journal.

[29]  Wendy A. Bickmore,et al.  Spatial organization of active and inactive genes and noncoding DNA within chromosome territories , 2002, The Journal of cell biology.

[30]  A. Grossman,et al.  The Transcriptional Regulator Rok Binds A+T-Rich DNA and Is Involved in Repression of a Mobile Genetic Element in Bacillus subtilis , 2010, PLoS genetics.

[31]  P. Graumann,et al.  Differential and Dynamic Localization of Topoisomerases in Bacillus subtilis , 2006, Journal of bacteriology.

[32]  D. Sherratt,et al.  Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli. , 2005, Genes & development.

[33]  K. Keiler Biology of trans-translation. , 2008, Annual review of microbiology.

[34]  G. Mackie RNase E: at the interface of bacterial RNA processing and decay , 2012, Nature Reviews Microbiology.

[35]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[36]  S. Busby,et al.  Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. , 2010, Current opinion in microbiology.

[37]  O. Espéli,et al.  DNA dynamics vary according to macrodomain topography in the E. coli chromosome , 2008, Molecular microbiology.

[38]  N. Kleckner,et al.  Chromosome and Replisome Dynamics in E. coli: Loss of Sister Cohesion Triggers Global Chromosome Movement and Mediates Chromosome Segregation , 2005, Cell.

[39]  Heejun Choi,et al.  Partitioning of RNA polymerase activity in live Escherichia coli from analysis of single-molecule diffusive trajectories. , 2013, Biophysical journal.

[40]  A. Hénaut,et al.  Analyzing stochastic transcription to elucidate the nucleoid's organization , 2008, BMC Genomics.

[41]  Andrew W. Murray,et al.  GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion , 1996, Current Biology.

[42]  C. Gross,et al.  Assay of Escherichia coli RNA polymerase: sigma-core interactions. , 2003, Methods in enzymology.

[43]  Michael J Rust,et al.  Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.

[44]  C. A. Thomas,et al.  Visualization of Bacterial Genes in Action , 1970, Science.

[45]  M. Umbarger Chromosome conformation capture assays in bacteria. , 2012, Methods.

[46]  P. Dennis,et al.  Cytoplasmic RNA Polymerase inEscherichia coli , 2001, Journal of bacteriology.

[47]  A. Grossman,et al.  Bipolar Localization of the Replication Origin Regions of Chromosomes in Vegetative and Sporulating Cells of B. subtilis , 1997, Cell.

[48]  Paul A. Wiggins,et al.  Strong intranucleoid interactions organize the Escherichia coli chromosome into a nucleoid filament , 2010, Proceedings of the National Academy of Sciences.

[49]  Sarath Chandra Janga,et al.  Transcriptional regulation shapes the organization of genes on bacterial chromosomes , 2009, Nucleic acids research.

[50]  M. Berlyn,et al.  Linkage Map of Escherichia coli K-12, Edition 10: The Traditional Map , 1998, Microbiology and Molecular Biology Reviews.

[51]  Michael A Thompson,et al.  Super-resolution imaging of the nucleoid-associated protein HU in Caulobacter crescentus. , 2011, Biophysical journal.

[52]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[53]  Patrick T. McGrath,et al.  Rapid and sequential movement of individual chromosomal loci to specific subcellular locations during bacterial DNA replication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Charles J. Dorman,et al.  Genome architecture and global gene regulation in bacteria: making progress towards a unified model? , 2013, Nature Reviews Microbiology.

[55]  J. Errington,et al.  Compartmentalization of transcription and translation in Bacillus subtilis , 2000, The EMBO journal.

[56]  Sigal Ben-Yehuda,et al.  Translation-Independent Localization of mRNA in E. coli , 2011, Science.

[57]  E. Kellenberger,et al.  The bacterial nucleoid revisited. , 1994, Microbiological reviews.

[58]  Charles R Cantor,et al.  RNA visualization in live bacterial cells using fluorescent protein complementation , 2007, Nature Methods.

[59]  Yoshihiro Ohta,et al.  Active RNA Polymerases: Mobile or Immobile Molecular Machines? , 2010, PLoS biology.

[60]  Albert Siryaporn,et al.  Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells , 2012, Molecular microbiology.

[61]  J. E. Cabrera,et al.  The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues , 2003, Molecular microbiology.

[62]  Bernhard Ø. Palsson,et al.  Immobilization of Escherichia coli RNA Polymerase and Location of Binding Sites by Use of Chromatin Immunoprecipitation and Microarrays , 2005, Journal of bacteriology.

[63]  O. Miller,et al.  Transcription mapping of the Escherichia coli chromosome by electron microscopy , 1989, Journal of bacteriology.

[64]  D. Sherratt,et al.  Spatial and temporal organization of replicating Escherichia coli chromosomes , 2003, Molecular microbiology.

[65]  J. E. Cabrera,et al.  Active Transcription of rRNA Operons Is a Driving Force for the Distribution of RNA Polymerase in Bacteria: Effect of Extrachromosomal Copies of rrnB on the In Vivo Localization of RNA Polymerase , 2006, Journal of bacteriology.

[66]  Mark Goulian,et al.  Membrane protein expression triggers chromosomal locus repositioning in bacteria , 2012, Proceedings of the National Academy of Sciences.

[67]  Cameron S. Osborne,et al.  Myc Dynamically and Preferentially Relocates to a Transcription Factory Occupied by Igh , 2007, PLoS biology.

[68]  L. Mirny,et al.  High-Resolution Mapping of the Spatial Organization of a Bacterial Chromosome , 2013, Science.

[69]  O. Sliusarenko,et al.  Spatial organization of the flow of genetic information in bacteria , 2010, Nature.

[70]  R. Singer,et al.  Localization of ASH1 mRNA particles in living yeast. , 1998, Molecular cell.

[71]  H. McAdams,et al.  Caulobacter chromosome in vivo configuration matches model predictions for a supercoiled polymer in a cell-like confinement , 2013, Proceedings of the National Academy of Sciences.

[72]  Ido Golding,et al.  RNA dynamics in live Escherichia coli cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[73]  Robert H Singer,et al.  Single-molecule analysis of gene expression using two-color RNA labeling in live yeast , 2012, Nature Methods.

[74]  Cameron S. Osborne,et al.  Active genes dynamically colocalize to shared sites of ongoing transcription , 2004, Nature Genetics.

[75]  D. Sherratt,et al.  The two Escherichia coli chromosome arms locate to separate cell halves. , 2006, Genes & development.

[76]  Jie Yan,et al.  Nucleoprotein filament formation is the structural basis for bacterial protein H-NS gene silencing , 2012, Scientific Reports.

[77]  R. B. Jensen,et al.  Multiple large filament bundles observed in Caulobacter crescentus by electron cryotomography , 2006, Molecular microbiology.

[78]  K. Keiler,et al.  Subcellular localization of a bacterial regulatory RNA , 2009, Proceedings of the National Academy of Sciences.

[79]  L. Shapiro,et al.  Changing Views on the Nature of the Bacterial Cell: from Biochemistry to Cytology , 1999, Journal of bacteriology.

[80]  Jolyon Holdstock,et al.  Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[81]  R. Ebright RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. , 2000, Journal of molecular biology.

[82]  A. Driessen,et al.  Protein translocation across the bacterial cytoplasmic membrane. , 2008, Annual review of biochemistry.

[83]  H. McAdams,et al.  Caulobacter requires a dedicated mechanism to initiate chromosome segregation , 2008, Proceedings of the National Academy of Sciences.

[84]  L. Rothfield,et al.  RNaseE and the other constituents of the RNA degradosome are components of the bacterial cytoskeleton , 2007, Proceedings of the National Academy of Sciences.

[85]  J. Dekker,et al.  Capturing Chromosome Conformation , 2002, Science.

[86]  J. Lawrence,et al.  Sensitive, high-resolution chromatin and chromosome mapping in situ: Presence and orientation of two closely integrated copies of EBV in a lymphoma line , 1988, Cell.

[87]  U. Endesfelder,et al.  Multiscale spatial organization of RNA polymerase in Escherichia coli. , 2013, Biophysical journal.

[88]  E. Cox,et al.  Real-Time Kinetics of Gene Activity in Individual Bacteria , 2005, Cell.

[89]  J. Weisshaar,et al.  Spatial Distribution and Diffusive Motion of RNA Polymerase in Live Escherichia coli , 2011, Journal of bacteriology.

[90]  T. Hwa,et al.  Growth-rate-dependent partitioning of RNA polymerases in bacteria , 2008, Proceedings of the National Academy of Sciences.

[91]  Andrew Travers,et al.  Gene order and chromosome dynamics coordinate spatiotemporal gene expression during the bacterial growth cycle , 2011, Proceedings of the National Academy of Sciences.

[92]  Ignacio Izeddin,et al.  Real-Time Dynamics of RNA Polymerase II Clustering in Live Human Cells , 2013, Science.

[93]  A. Grossman,et al.  Effects of the Chromosome Partitioning Protein Spo0J (ParB) on oriC Positioning and Replication Initiation in Bacillus subtilis , 2003, Journal of bacteriology.

[94]  Marc A. Martí-Renom,et al.  The Three-Dimensional Architecture of a Bacterial Genome and Its Alteration by Genetic Perturbation , 2012, RECOMB.

[95]  M. Ehrenberg,et al.  Free RNA polymerase and modeling global transcription in Escherichia coli. , 2003, Biochimie.

[96]  François Képès,et al.  Periodic transcriptional organization of the E.coli genome. , 2004, Journal of molecular biology.

[97]  J. E. Cabrera,et al.  Coupling the distribution of RNA polymerase to global gene regulation and the dynamic structure of the bacterial nucleoid in Escherichia coli. , 2006, Journal of structural biology.

[98]  S. Adhya,et al.  Role of HU and DNA supercoiling in transcription repression: specialized nucleoprotein repression complex at gal promoters in Escherichia coli , 1999, Molecular microbiology.

[99]  A. Chang,et al.  Localization of transcribing genes in the bacterial cell by means of high resolution autoradiography. , 1975, Journal of molecular biology.

[100]  M. Hentze,et al.  Using the λN Peptide to Tether Proteins to RNAs , 2004 .

[101]  J. Hoch,et al.  Revised genetic linkage map of Bacillus subtilis , 1985, Microbiological reviews.

[102]  Arjun Raj,et al.  Detection of individual endogenous RNA transcripts in situ using multiple singly labeled probes. , 2010, Methods in enzymology.

[103]  Wendy A. Bickmore,et al.  Transcription factories: gene expression in unions? , 2009, Nature Reviews Genetics.

[104]  W. Webb,et al.  Precise nanometer localization analysis for individual fluorescent probes. , 2002, Biophysical journal.

[105]  F. Hansen,et al.  The Escherichia coli chromosome is organized with the left and right chromosome arms in separate cell halves , 2006, Molecular microbiology.

[106]  E. Cox,et al.  Gene location and DNA density determine transcription factor distributions in Escherichia coli , 2012, Molecular systems biology.

[107]  G. Churchward,et al.  Synthesis and activity of ribonucleic acid polymerase in Escherichia coli , 1980, Journal of bacteriology.

[108]  Adrian Salic,et al.  Exploring RNA transcription and turnover in vivo by using click chemistry , 2008, Proceedings of the National Academy of Sciences.

[109]  Thomas Schmidt,et al.  Single-Molecule Analysis of Biomembranes , 2009 .

[110]  F. Neidhardt,et al.  Linkage Map of Escherichia coli K-12 , 1987 .

[111]  D. Jackson,et al.  Active RNA polymerases are localized within discrete transcription "factories' in human nuclei. , 1996, Journal of cell science.

[112]  Bruno Torrésani,et al.  Decoding the nucleoid organisation of Bacillus subtilis and Escherichia coli through gene expression data , 2005, BMC Genomics.

[113]  Tsai-Kun Li,et al.  Distribution of gyrase and topoisomerase IV on bacterial nucleoid: implications for nucleoid organization , 2006, Nucleic acids research.

[114]  T. Mizuno,et al.  Clarification of the dimerization domain and its functional significance for the Escherichia coli nucleoid protein H-NS. , 1997, Journal of molecular biology.

[115]  M. F. White,et al.  The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. , 2008, Critical reviews in biochemistry and molecular biology.

[116]  O. Espéli,et al.  Long-Range Chromosome Organization in E. coli: A Site-Specific System Isolates the Ter Macrodomain , 2012, PLoS genetics.

[117]  S. Cohen,et al.  RNA degradosomes exist in vivo in Escherichia coli as multicomponent complexes associated with the cytoplasmic membrane via the N-terminal region of ribonuclease E. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[118]  T. Inada,et al.  Implication of membrane localization of target mRNA in the action of a small RNA: mechanism of post-transcriptional regulation of glucose transporter in Escherichia coli. , 2005, Genes & development.

[119]  Lun Cui,et al.  Enhancer-like long-range transcriptional activation by λ CI-mediated DNA looping , 2013, Proceedings of the National Academy of Sciences.

[120]  Benjamin Audit,et al.  From genes to genomes: universal scale-invariant properties of microbial chromosome organisation. , 2003, Journal of molecular biology.

[121]  M. Rossignol,et al.  Macrodomain organization of the Escherichia coli chromosome , 2004, The EMBO journal.

[122]  E. Dimitriadis,et al.  Galactose repressor mediated intersegmental chromosomal connections in Escherichia coli , 2012, Proceedings of the National Academy of Sciences.

[123]  N. Trun,et al.  Unfolding of the bacterial nucleoid both in vivo and in vitro as a result of exposure to camphor , 1997, Journal of bacteriology.

[124]  P. Rösch,et al.  The role of E. coli Nus-Factors in transcription regulation and transcription , 2011, Transcription.