Betelgeuse: a review

Was Betelgeuse once in a binary star system? What causes it to vary over a vast range of timescales? Why did it dim dramatically in 2020? When and how will it explode? J. Craig Wheeler and Manos Chatzopoulos present a host of challenges to both observers and theorists.

[1]  P. Massey,et al.  The Time-averaged Mass-loss Rates of Red Supergiants as Revealed by Their Luminosity Functions in M31 and M33 , 2022, The Astrophysical Journal.

[2]  S. D. Mink,et al.  The VLT-FLAMES Tarantula Survey. Observational evidence for two distinct populations of massive runaway stars in 30 Doradus , 2022, Astronomy & Astrophysics.

[3]  V. Perdelwitz,et al.  Chromospheric activity and photospheric variation of alpha Ori during the great dimming event in 2020 , 2022, Astronomy & Astrophysics.

[4]  J. Krtička,et al.  Analysis of photometric and spectroscopic variability of red supergiant Betelgeuse , 2022, New Astronomy.

[5]  A. Dupree,et al.  The Great Dimming of Betelgeuse: A Surface Mass Ejection and Its Consequences , 2022, The Astrophysical Journal.

[6]  D. Kasen,et al.  3D Hydrodynamics of Pre-supernova Outbursts in Convective Red Supergiant Envelopes , 2022, The Astrophysical Journal.

[7]  G. Torres,et al.  Colour evolution of Betelgeuse and Antares over two millennia, derived from historical records, as a new constraint on mass and age , 2022, Monthly Notices of the Royal Astronomical Society.

[8]  A. Dupree,et al.  Spatially Resolved Observations of Betelgeuse at λ7 mm and λ1.3 cm Just prior to the Great Dimming , 2022, The Astrophysical Journal.

[9]  D. Taniguchi,et al.  The Great Dimming of Betelgeuse seen by the Himawari-8 meteorological satellite , 2022, Nature Astronomy.

[10]  H. Umeda,et al.  Stellar Models of Betelgeuse Constrained Using Observed Surface Conditions , 2022, The Astrophysical Journal.

[11]  T. Roudier,et al.  Three/-dimensional imaging of convective cells in the photosphere of Betelgeuse , 2022, Astronomy & Astrophysics.

[12]  R. Humphreys,et al.  Episodic Gaseous Outflows and Mass Loss from Red Supergiants , 2022, The Astronomical Journal.

[13]  L. Bildsten,et al.  Numerical Simulations of Convective Three-dimensional Red Supergiant Envelopes , 2021, The Astrophysical Journal.

[14]  W. Vacca,et al.  SOFIA upGREAT/FIFI-LS Emission-line Observations of Betelgeuse during the Great Dimming of 2019/2020 , 2021, The Astronomical Journal.

[15]  Daniel J. Price,et al.  Common envelopes in massive stars: Towards the role of radiation pressure and recombination energy in ejecting red supergiant envelopes , 2021, 2111.00923.

[16]  Aigen Li,et al.  Spectroscopic evidence for a large spot on the dimming Betelgeuse , 2021, Nature Communications.

[17]  G. Perrin,et al.  A dusty veil shading Betelgeuse during its Great Dimming , 2021, Nature.

[18]  E. Levesque Great Dimming of Betelgeuse explained , 2021, Nature.

[19]  A. Jorissen,et al.  Atmosphere of Betelgeuse before and during the Great Dimming event revealed by tomography , 2021, Astronomy & Astrophysics.

[20]  Dominic C. Marcello,et al.  octo-tiger: a new, 3D hydrodynamic code for stellar mergers that uses hpx parallelization , 2021, 2101.08226.

[21]  E. Guinan,et al.  The Photospheric Temperatures of Betelgeuse during the Great Dimming of 2019/2020: No New Dust Required , 2020, The Astrophysical Journal.

[22]  S. Nance,et al.  The Betelgeuse Project. III. Merger Characteristics , 2020, The Astrophysical Journal.

[23]  Klaus G. Strassmeier,et al.  Spatially Resolved Ultraviolet Spectroscopy of the Great Dimming of Betelgeuse , 2020, The Astrophysical Journal.

[24]  J. Fuller,et al.  Hydrodynamic Simulations of Pre-supernova Outbursts in Red Supergiants: Asphericity and Mass Loss , 2020, The Astrophysical Journal.

[25]  M. Ireland,et al.  Standing on the Shoulders of Giants: New Mass and Distance Estimates for Betelgeuse through Combined Evolutionary, Asteroseismic, and Hydrodynamic Simulations with MESA , 2020, The Astrophysical Journal.

[26]  Iain McDonald,et al.  Betelgeuse Fainter in the Submillimeter Too: An Analysis of JCMT and APEX Monitoring during the Recent Optical Minimum , 2020, The Astrophysical Journal.

[27]  Dominic C. Marcello,et al.  Is Betelgeuse the Outcome of a Past Merger? , 2020, The Astrophysical Journal.

[28]  J. Fuller,et al.  Centrifugally driven mass-loss and outbursts of massive stars , 2020, Monthly Notices of the Royal Astronomical Society.

[29]  Matthew J. Richter,et al.  SOFIA-EXES Observations of Betelgeuse during the Great Dimming of 2019/2020 , 2020, The Astrophysical Journal.

[30]  Philip Massey,et al.  Betelgeuse Just Is Not That Cool: Effective Temperature Alone Cannot Explain the Recent Dimming of Betelgeuse , 2020, 2002.10463.

[31]  V. Morozova,et al.  The Influence of Late-stage Nuclear Burning on Red Supergiant Supernova Light Curves , 2019, The Astrophysical Journal.

[32]  N. Castro,et al.  HD 93795: a late-B supergiant star with a square circumstellar nebula , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  G. Perrin,et al.  The inner dust shell of Betelgeuse detected by polarimetric aperture-masking interferometry , 2019, Astronomy & Astrophysics.

[34]  I. Arcavi,et al.  The diverse lives of progenitors of hydrogen-rich core-collapse supernovae: the role of binary interaction , 2019, Astronomy & Astrophysics.

[35]  D. Dobie,et al.  The period–luminosity relation of red supergiants with Gaia DR2 , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  N. Wright,et al.  Dynamical evolution of star-forming regions: III. Unbound stars and predictions for Gaia , 2019, Monthly Notices of the Royal Astronomical Society.

[37]  J. Vink,et al.  Massive star evolution: rotation, winds, and overshooting vectors in the mass-luminosity plane , 2018, Astronomy & Astrophysics.

[38]  S. D. Mink,et al.  Massive runaway and walkaway stars , 2018, Astronomy & Astrophysics.

[39]  P. Mathias,et al.  Convective cells in Betelgeuse: imaging through spectropolarimetry , 2018, Astronomy & Astrophysics.

[40]  James M. Stone,et al.  Bound Outflows, Unbound Ejecta, and the Shaping of Bipolar Remnants during Stellar Coalescence , 2018, The Astrophysical Journal.

[41]  J. Wheeler,et al.  The Betelgeuse Project II: asteroseismology , 2018, Monthly Notices of the Royal Astronomical Society.

[42]  G. Perrin,et al.  Evolution of the magnetic field of Betelgeuse from 2009–2017 , 2018, Astronomy & Astrophysics.

[43]  C. Ott,et al.  r-process Nucleosynthesis from Three-dimensional Magnetorotational Core-collapse Supernovae , 2017, The Astrophysical Journal.

[44]  U. California,et al.  Angular momentum transport by heat-driven g-modes in slowly pulsating B stars , 2017, 1712.02420.

[45]  Alexander Heger,et al.  A High-resolution Study of Presupernova Core Structure , 2017, The Astrophysical Journal.

[46]  K. Ohnaka,et al.  The close circumstellar environment of Betelgeuse - V. Rotation velocity and molecular envelope properties from ALMA , 2017, 1711.07983.

[47]  F. Timmes,et al.  Modules for Experiments in Stellar Astrophysics ( ): Convective Boundaries, Element Diffusion, and Massive Star Explosions , 2017, 1710.08424.

[48]  M. Pinsonneault,et al.  Surface rotation of Kepler red giant stars , 2017, 1707.05989.

[49]  E. Guinan,et al.  An Updated 2017 Astrometric Solution for Betelgeuse , 2017, 1706.06020.

[50]  L. Decin,et al.  The inhomogeneous submillimeter atmosphere of Betelgeuse , 2017, 1706.06021.

[51]  P. Podsiadlowski,et al.  Episodic mass ejections from common-envelope objects , 2017, 1705.08457.

[52]  J. Fuller Pre-supernova outbursts via wave heating in massive stars – I. Red supergiants , 2017, 1704.08696.

[53]  J. Wheeler,et al.  The Betelgeuse Project: constraints from rotation , 2016, 1611.08031.

[54]  C. Matzner,et al.  Shock Dynamics in Stellar Outbursts. I. Shock Formation , 2016, 1612.08997.

[55]  N. Ivanova,et al.  Common envelope events with low-mass giants: understanding the transition to the slow spiral-in , 2016, 1606.04923.

[56]  P. Kroupa,et al.  Dynamical ejections of massive stars from young star clusters under diverse initial conditions , 2016, 1604.00006.

[57]  S. T. Ridgway,et al.  The close circumstellar environment of Betelgeuse - IV. VLTI/PIONIER interferometric monitoring of the photosphere , 2016, 1602.05108.

[58]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[59]  C. Evans,et al.  The VLT-FLAMES Tarantula Survey XXII. Multiplicity properties of the B-type stars , 2015 .

[60]  P. Podsiadlowski,et al.  On the role of recombination in common-envelope ejections , 2014, 1409.3260.

[61]  R. Kotak,et al.  Interacting supernovae from photoionization-confined shells around red supergiant stars , 2014, Nature.

[62]  M. H. Montgomery,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): PLANETS, OSCILLATIONS, ROTATION, AND MASSIVE STARS , 2013, 1301.0319.

[63]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[64]  M. Barlow,et al.  The enigmatic nature of the circumstellar envelope and bow shock surrounding Betelgeuse as revealed by Herschel - I. Evidence of clumps, multiple arcs, and a linear bar-like structure , 2012, 1212.4870.

[65]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[66]  L. Matthews,et al.  Discovery of a detached HI gas shell surrounding alpha Orionis , 2012, 1203.0255.

[67]  N. Mowlavi,et al.  Grids of stellar models with rotation - I. Models from 0.8 to 120 M⊙ at solar metallicity (Z = 0.014) , 2011, 1110.5049.

[68]  N. Langer,et al.  3D simulations of Betelgeuse’s bow shock , 2011, 1109.1555.

[69]  J. Heyl,et al.  The magnetized bellows of Betelgeuse , 2011, 1109.5148.

[70]  F. Millour,et al.  Imaging the dynamical atmosphere of the red supergiant Betelgeuse in the CO first overtone lines with VLTI/AMBER , , 2011, 1104.0958.

[71]  C. Evans,et al.  Rotating massive main-sequence stars: II. Simulating a population of LMC early B-type stars as a test of rotational mixing , 2011, 1102.0766.

[72]  C. Evans,et al.  Rotating massive main-sequence stars - I. Grids of evolutionary models and isochrones , 2011, 1102.0530.

[73]  Frank Timmes,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA) , 2010, 1009.1622.

[74]  G. Perrin,et al.  The magnetic field of Betelgeuse: a local dynamo from giant convection cells? , 2010, 1005.4845.

[75]  B. Plez,et al.  Radiative hydrodynamics simulations of red supergiant stars - II. Simulations of convection on Betelgeuse match interferometric observations , 2010, 1003.1407.

[76]  S. Meimon,et al.  Imaging the spotty surface of Betelgeuse in the H band , 2009, 0910.4167.

[77]  Pierre Kervella,et al.  The Close Circumstellar Environment of Betelgeuse: Adaptive Optics Spectro-imaging in the Near-IR with VLT/NACO , 2009, 0907.1843.

[78]  F. Millour,et al.  Spatially resolving the inhomogeneous structure of the dynamical atmosphere of Betelgeuse with VLTI/AMBER , 2009, 0906.4792.

[79]  M. Aloy,et al.  Semi-global simulations of the magneto-rotational instability in core collapse supernovae , 2008, 0811.1652.

[80]  C. Chiappini,et al.  Effects of rotation on the evolution of primordial stars , 2008, 0807.0573.

[81]  E. Guinan,et al.  A NEW VLA–HIPPARCOS DISTANCE TO BETELGEUSE AND ITS IMPLICATIONS , 2008 .

[82]  D. Hale,et al.  The Nonspherical Shape of Betelgeuse in the Mid-Infrared , 2007 .

[83]  Andrea Richichi,et al.  The molecular and dusty composition of Betelgeuse's inner circumstellar environment , 2007, 0709.0356.

[84]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[85]  P. Podsiadlowski,et al.  The Triple-Ring Nebula Around SN 1987A: Fingerprint of a Binary Merger , 2007, Science.

[86]  P. Ricker,et al.  Common Envelope Evolution , 2006, astro-ph/0611043.

[87]  T. Bedding,et al.  Variability in red supergiant stars: pulsations, long secondary periods and convection noise , 2006, astro-ph/0608438.

[88]  N. Soker,et al.  Violent stellar merger model for transient events , 2006, astro-ph/0606467.

[89]  A. K. Vivas,et al.  The CIDA Variability Survey of Orion OB1. I. The Low-Mass Population of Ori OB1a and 1b , 2004, astro-ph/0410521.

[90]  S. Dorch Magnetic activity in late-type giant stars: Numerical MHD simulations of non-linear dynamo action in Betelgeuse , 2004, astro-ph/0403321.

[91]  D. Lambert,et al.  The outer atmosphere of the M-type supergiant α Orionis: K I 7699 Å emission , 2002, astro-ph/0203209.

[92]  J. P. Laboratory,et al.  The Magnetorotational Instability in Core-Collapse Supernova Explosions , 2002, astro-ph/0208128.

[93]  D. F. Gray,et al.  Betelgeuse: Giant Convection Cells , 2001 .

[94]  P. Podsiadlowski,et al.  Hydrodynamical simulations of the stream–core interaction in the slow merger of massive stars , 2001, astro-ph/0109524.

[95]  Alexander Brown,et al.  A Spatially Resolved, Semiempirical Model for the Extended Atmosphere of α Orionis (M2 Iab) , 2001 .

[96]  A. Dupree,et al.  Modeling the Variable Chromosphere of α Orionis , 2000 .

[97]  T. Tsuji Water on the Early M Supergiant Stars α Orionis and μ Cephei , 2000 .

[98]  G. Meynet,et al.  THE EVOLUTION OF ROTATING STARS , 2000, astro-ph/0004204.

[99]  Han Uitenbroek,et al.  Spatially Resolved Hubble Space Telescope Spectra of the Chromosphere of α Orionis , 1998 .

[100]  Ralph G. Marson,et al.  Large convection cells as the source of Betelgeuse's extended atmosphere , 1998, Nature.

[101]  D. Jennings,et al.  Water in Betelgeuse and Antares. , 1998, Science.

[102]  Alberto Noriega-Crespo,et al.  A Parsec-Size Bow Shock around Betelgeuse , 1997 .

[103]  A. Dupree,et al.  First Image of the Surface of a Star with the Hubble Space Telescope , 1996 .

[104]  S. Baliunas,et al.  Periodic photospheric and chromospheric modulation in Alpha Orionis (Betelgeuse) , 1987 .

[105]  H. R. Johnson,et al.  Carbon, nitrogen and oxygem abundances in Betelgeuse. , 1984 .

[106]  D. Lambert,et al.  K I 7699 Å emission from the Betelgeuse shell. , 1976 .

[107]  Martin Schwarzschild,et al.  On the scale of photospheric convection in red giants and supergiants. , 1975 .

[108]  N. Woolf,et al.  Infrared Spectra of Red-Giant Stars. , 1964 .