Results from the Supernova Photometric Classification Challenge

We report results from the Supernova Photometric Classification Challenge (SNPhotCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rates. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function, and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia-type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN and nine entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe Ia has an efficiency of 0.96 and an SN Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPhotCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS-II, and provided the answer keys so that developers can evaluate their own analysis.

[1]  M. Phillips,et al.  The Absolute Magnitudes of Type IA Supernovae , 1993 .

[2]  M. Phillips,et al.  Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.

[3]  P. Nugent,et al.  High-Redshift Supernovae in the Hubble Deep Field , 1999, astro-ph/9903229.

[4]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[5]  Ninan Sajeeth Philip,et al.  Boosting the differences: A fast Bayesian classifier neural network , 2000, Intell. Data Anal..

[6]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[7]  Christopher J. Miller,et al.  Controlling the False-Discovery Rate in Astrophysical Data Analysis , 2001, astro-ph/0107034.

[8]  A. Goobar,et al.  Selection of High‐z Supernova Candidates , 2002, astro-ph/0201172.

[9]  Optical and Infrared Spectroscopy of SN 1999ee and SN 1999ex , 2002, astro-ph/0203491.

[10]  R. Thomas,et al.  A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.

[11]  Thomas Matheson,et al.  Not Color‐Blind: Using Multiband Photometry to Classify Supernovae , 2002 .

[12]  Peter Garnavich,et al.  Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.

[13]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[14]  Stefano Casertano,et al.  Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.

[15]  D. Maoz,et al.  Photometric Identification of Young Stripped‐Core Supernovae , 2004, astro-ph/0403296.

[16]  J. Neill,et al.  Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.

[17]  J. Tonry,et al.  The Rate of Type Ia Supernovae at High Redshift , 2005, astro-ph/0509655.

[18]  Photometric Identification of Type Ia Supernovae at Moderate Redshift , 2005, astro-ph/0511377.

[19]  M. Sullivan,et al.  The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.

[20]  N. Kuznetsova,et al.  A Probabilistic Approach to Classifying Supernovae Using Photometric Information , 2006, astro-ph/0609637.

[21]  Huan Lin,et al.  A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.

[22]  M. Sullivan,et al.  SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.

[23]  M. Kunz,et al.  Bayesian estimation applied to multiple species , 2006, astro-ph/0611004.

[24]  M. Fukugita,et al.  Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6 , 2007, 0707.0393.

[25]  N. B. Suntzeff,et al.  Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.

[26]  Bayesian Single-Epoch Photometric Classification of Supernovae , 2006, astro-ph/0610129.

[27]  J. Frieman,et al.  Photometric Redshift Error Estimators , 2007, 0711.0962.

[28]  K. Dawson,et al.  A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0710.3120.

[29]  M. Sullivan,et al.  SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.

[30]  J. Prieto,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.

[31]  M. Smith,et al.  A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.

[32]  J. Kaplan,et al.  THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.

[33]  M. Sullivan,et al.  The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.

[34]  S. Rodney,et al.  FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION , 2009, 0910.3702.

[35]  J. Vanderplas,et al.  FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.

[36]  Adam G. Riess,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 03/07/07 , 2022 .

[37]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[38]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[39]  Jake Vanderplas,et al.  SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.

[40]  University of Chicago,et al.  Dark Energy Survey Supernovae: Simulations and Survey Strategy , 2009 .

[41]  Ann B. Lee,et al.  EXPLOITING LOW-DIMENSIONAL STRUCTURE IN ASTRONOMICAL SPECTRA , 2008, 0807.2900.

[42]  Adam G. Riess,et al.  TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.

[43]  R. Nichol,et al.  PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE , 2010, 1001.0738.

[44]  S. Jha,et al.  Supernova Photometric Classification Challenge , 2010, 1001.5210.

[45]  S. Rodney,et al.  FUZZY SUPERNOVA TEMPLATES. II. PARAMETER ESTIMATION , 2010, 1003.5724.

[46]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.