Results from the Supernova Photometric Classification Challenge
暂无分享,去创建一个
N. S. Philip | Melvin M. Varughese | A. Mahabal | R. Nichol | J. Frieman | D. Schneider | M. Kunz | J. Richards | S. Rodney | S. Jha | S. Kuhlmann | R. Kessler | M. Sako | H. Campbell | B. Bassett | P. Belov | Vasudha Bhatnagar | A. Conley | A. Glazov | S. González-Gaitán | R. Hložek | H. Lampeitl | J. Newling | D. Parkinson | D. Poznanski | Mathew Smith | M. Stritzinger | D. Schneider | M. Varughese | A. Glazov | D. Schneider
[1] M. Phillips,et al. The Absolute Magnitudes of Type IA Supernovae , 1993 .
[2] M. Phillips,et al. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant , 1998, astro-ph/9805201.
[3] P. Nugent,et al. High-Redshift Supernovae in the Hubble Deep Field , 1999, astro-ph/9903229.
[4] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[5] Ninan Sajeeth Philip,et al. Boosting the differences: A fast Bayesian classifier neural network , 2000, Intell. Data Anal..
[6] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[7] Christopher J. Miller,et al. Controlling the False-Discovery Rate in Astrophysical Data Analysis , 2001, astro-ph/0107034.
[8] A. Goobar,et al. Selection of High‐z Supernova Candidates , 2002, astro-ph/0201172.
[9] Optical and Infrared Spectroscopy of SN 1999ee and SN 1999ex , 2002, astro-ph/0203491.
[10] R. Thomas,et al. A Comparative Study of the Absolute Magnitude Distributions of Supernovae , 2001, astro-ph/0112051.
[11] Thomas Matheson,et al. Not Color‐Blind: Using Multiband Photometry to Classify Supernovae , 2002 .
[12] Peter Garnavich,et al. Cosmological Results from High-z Supernovae , 2003, astro-ph/0305008.
[13] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[14] Stefano Casertano,et al. Type Ia Supernova Discoveries at z > 1 from the Hubble Space Telescope: Evidence for Past Deceleration and Constraints on Dark Energy Evolution , 2004, astro-ph/0402512.
[15] D. Maoz,et al. Photometric Identification of Young Stripped‐Core Supernovae , 2004, astro-ph/0403296.
[16] J. Neill,et al. Photometric Selection of High-Redshift Type Ia Supernova Candidates , 2005, astro-ph/0510857.
[17] J. Tonry,et al. The Rate of Type Ia Supernovae at High Redshift , 2005, astro-ph/0509655.
[18] Photometric Identification of Type Ia Supernovae at Moderate Redshift , 2005, astro-ph/0511377.
[19] M. Sullivan,et al. The Type Ia Supernova Rate at z ≈ 0.5 from the Supernova Legacy Survey , 2006, astro-ph/0605148.
[20] N. Kuznetsova,et al. A Probabilistic Approach to Classifying Supernovae Using Photometric Information , 2006, astro-ph/0609637.
[21] Huan Lin,et al. A Galaxy Photometric Redshift Catalog for the Sloan Digital Sky Survey Data Release 6 , 2007, 0708.0030.
[22] M. Sullivan,et al. SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators , 2007, astro-ph/0701828.
[23] M. Kunz,et al. Bayesian estimation applied to multiple species , 2006, astro-ph/0611004.
[24] M. Fukugita,et al. Supernovae in the Subaru Deep Field: an initial sample and Type Ia rate out to redshift 1.6 , 2007, 0707.0393.
[25] N. B. Suntzeff,et al. Observational Constraints on the Nature of Dark Energy: First Cosmological Results from the ESSENCE Supernova Survey , 2007, astro-ph/0701041.
[26] Bayesian Single-Epoch Photometric Classification of Supernovae , 2006, astro-ph/0610129.
[27] J. Frieman,et al. Photometric Redshift Error Estimators , 2007, 0711.0962.
[28] K. Dawson,et al. A New Determination of the High-Redshift Type Ia Supernova Rates with the Hubble Space Telescope Advanced Camera for Surveys , 2007, 0710.3120.
[29] M. Sullivan,et al. SiFTO: An Empirical Method for Fitting SN Ia Light Curves , 2008, 0803.3441.
[30] J. Prieto,et al. THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: SEARCH ALGORITHM AND FOLLOW-UP OBSERVATIONS , 2007, 0708.2750.
[31] M. Smith,et al. A Measurement of the Rate of Type Ia Supernovae at Redshift z ≈ 0.1 from the First Season of the SDSS-II Supernova Survey , 2008, 0801.3297.
[32] J. Kaplan,et al. THE SLOAN DIGITAL SKY SURVEY-II SUPERNOVA SURVEY: TECHNICAL SUMMARY , 2007, 0708.2749.
[33] M. Sullivan,et al. The Core-collapse rate from the Supernova Legacy Survey , 2009, 0904.1066.
[34] S. Rodney,et al. FUZZY SUPERNOVA TEMPLATES. I. CLASSIFICATION , 2009, 0910.3702.
[35] J. Vanderplas,et al. FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS: HUBBLE DIAGRAM AND COSMOLOGICAL PARAMETERS , 2009, 0908.4274.
[36] Adam G. Riess,et al. Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 03/07/07 , 2022 .
[37] Donald W. Sweeney,et al. LSST Science Book, Version 2.0 , 2009, 0912.0201.
[38] Copenhagen,et al. The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .
[39] Jake Vanderplas,et al. SNANA: A Public Software Package for Supernova Analysis , 2009, 0908.4280.
[40] University of Chicago,et al. Dark Energy Survey Supernovae: Simulations and Survey Strategy , 2009 .
[41] Ann B. Lee,et al. EXPLOITING LOW-DIMENSIONAL STRUCTURE IN ASTRONOMICAL SPECTRA , 2008, 0807.2900.
[42] Adam G. Riess,et al. TYPE II-P SUPERNOVAE FROM THE SDSS-II SUPERNOVA SURVEY AND THE STANDARDIZED CANDLE METHOD , 2009, 0910.5597.
[43] R. Nichol,et al. PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE , 2010, 1001.0738.
[44] S. Jha,et al. Supernova Photometric Classification Challenge , 2010, 1001.5210.
[45] S. Rodney,et al. FUZZY SUPERNOVA TEMPLATES. II. PARAMETER ESTIMATION , 2010, 1003.5724.
[46] Eduardo Serrano,et al. LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.